Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767853

RESUMO

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

2.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38287460

RESUMO

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

3.
Angew Chem Int Ed Engl ; : e202407639, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976402

RESUMO

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4·2H2O full cells with a low N/P ratio (2:1) show a high energy density of 75.2 Wh kg-1full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.

4.
BMC Genomics ; 24(1): 291, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254055

RESUMO

BACKGROUND: Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species. RESULTS: The first high-quality chromosome-level genome of the Hong Kong catfish was constructed. The total genome was 933.4 Mb, with 416 contigs and a contig N50 length of 8.52 Mb. Using high-throughput chromosome conformation capture (Hi-C) data, the genome assembly was divided into 28 chromosomes with a scaffold N50 length of 36.68 Mb. A total of 23,345 protein-coding genes were predicted in the genome, and 94.28% of the genes were functionally annotated in public databases. Phylogenetic analysis indicated that C. fuscus and Clarias magur diverged approximately 63.7 million years ago. The comparative genome results showed that a total of 60 unique, 353 expanded and 851 contracted gene families were identified in Hong Kong catfish. A sex-linked quantitative trait locus identified in a previous study was located in a sex-determining region of 30.26 Mb (0.02 to 30.28 Mb) on chromosome 13 (Chr13), the predicted Y chromosome. This QTL region contained 785 genes, of which 18 were identified as sex-related genes. CONCLUSIONS: This study is the first to report the chromosome-level genome assembly of Hong Kong catfish. The study provides an excellent genetic resource that will facilitate future studies of sex determination mechanisms and evolution in fish.


Assuntos
Peixes-Gato , Cromossomos , Animais , Filogenia , Hong Kong , Genoma , Peixes-Gato/genética , Cromossomo Y
5.
Angew Chem Int Ed Engl ; 62(44): e202311032, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691598

RESUMO

The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+ -conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm-2 , presenting a record-high cumulative capacity up to 45 Ah cm-2 . The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3 O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.

6.
Angew Chem Int Ed Engl ; 62(16): e202217945, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36789448

RESUMO

Aqueous rechargeable Mg batteries (ARMBs) usually fail from severe anode passivation, alternatively, executing quasi-underpotential Mg plating/stripping chemistry (UPMC) on a proper heterogeneous metal substrate is a crucial remedy. Herein, a stable UPMC on Zn substrate is initially achieved in new hydrated eutectic electrolytes (HEEs), delivering an ultralow UPMC overpotential and high energy/voltage plateau of ARMBs. The unique eutectic property remarkably expands the lower limit of electrochemical stability window (ESW) of HEEs and undermines the competition between hydrogen evolution/corrosion reactions and UPMC, enabling a reversible UPMC. The UPMC is carefully revealed by multiple characterizations, which shows a low overpotential of 50 mV at 0.1 mA cm-2 over 550 h. With sulfonic acid-doped polyaniline (SPANI) cathodes, UPMC-based full cells show high energy/power densities of 168.6 Wh kg-1 /2.1 kWh kg-1 and voltage plateau of 1.3 V, far overwhelming conventional aqueous systems.

7.
Angew Chem Int Ed Engl ; 62(5): e202215385, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36437231

RESUMO

The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2 (SO4 )3 is proposed as decent electrolyte additive to manipulate OH- -mediated cross-communication between Zn anode and NaV3 O8 ⋅ 1.5H2 O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH- accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH- toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH- -mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.

8.
Small ; 18(13): e2107667, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098643

RESUMO

Developing highly efficient bifunctional catalysts for the oxygen reduction and oxygen evolution reaction (ORR/OER) can open possibilities for future zinc air batteries (ZABs). Herein, cost-effective and highly conductive few-layer ferric and nickel chloride co-intercalated graphite intercalation compounds (FeCl3 -NiCl2 -GIC) are designed as bifunctional oxygen catalysts for ZAB. The optimized few-layer FeCl3 -NiCl2 -GIC catalyst exhibits a small overpotential of 276 mV at 10 mA cm-2 for the OER and achieves a high onset potential of 0.89 V for the ORR. The theoretical analysis demonstrates the electron-rich state on the carbon layers of FeCl3 -NiCl2 -GIC during the catalytic process favors the kinetics of electron transfer and lowers the absorption energy barriers for intermediates. Impressively, the ZAB assembled with few-layer FeCl3 -NiCl2 -GIC catalyst displays a 160 h cycling stability and a high energy efficiency of 72.6%. This work also suggests the possibility of utilizing layer electronic structure regulation on graphite intercalation compounds as effective bifunctional catalysts for ZABs.

9.
Chemistry ; 28(49): e202201151, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695712

RESUMO

Lithium metal batteries (LMBs) have attracted extensive attention owing to their high energy density. However, the uncontrolled volume changes and serious dendrite growth of the Li metal anode have hindered their commercialization. Herein, a three-dimensional Cu foam decorated with Au nanoparticles and conformal graphene layer was designed to tune the Li plating/stripping behaviors. The 3D-Cu conductive host anchored by lithiophilic Au nanoparticles can effectively alleviate the volume expansion caused by the continuous plating/stripping of Li and reduce the nucleation energy barrier. Notably, the conductive graphene not only facilitates the transfer of electrons, but also acts as an ionic rectifier, thereby avoiding the aggregation of local current density and Li+ ions around Au nanoparticles and enabling the uniform Li+ flux. As a result, the G-Au@3D-Cu/Li anode ensures the non-dendritic and homogeneous Li+ plating/stripping. Electrochemical results show that the symmetric G-Au@3D-Cu/Li cell delivers a low voltage hysteresis of 110 mV after 1000 h at 1 mA cm-2 . Matched with a layered LiNi0.6 Co0.2 Mn0.2 O2 cathode, the NCM622||G-Au@3D-Cu/Li full cell exhibits a long cycle life of 2000 cycles and an ultra-low capacity decay rate (0.01 % per cycle).

10.
Chemistry ; 28(54): e202201687, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35790473

RESUMO

Rechargeable zinc-ion batteries (ZIBs) are potential for grid-scale applications owing to their safety, low price, and available sources. The development of ZIBs cathode with high specific capacity, wide operating voltage window and stable cyclability is urgently needed in next-generation commercial batteries. Herein, we report a structurally crystalline-stable Mn(VO3 )2 nanobelts cathode for ZIBs prepared via a facile hydrothermal method. The as-synthesized Mn(VO3 )2 exhibited high specific capacity of 350 mAh g-1 at 0.1 A g-1 , and maintained a capacity retention of 92 % after 10,000 cycles at 2 A g-1 . It also showed good rate performance and obtained a reversible capacity of up to 200 mAh g-1 after 600 cycles at 0.2 A g-1 under -20 °C. The electrochemical tests suggest that Mn(VO3 )2 nanobelts impart fast Zn2+ ions migration, and the introduction of manganese atoms help make the structures more indestructible, leading to a good rate performance and prolonged cycle lifespan.

11.
Nano Lett ; 21(22): 9675-9683, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34668713

RESUMO

Developing advanced electrode materials with enhanced charge-transfer kinetics is the key to realizing fast energy storage technologies. Commonly used modification strategies, such as nanoengineering and carbon coating, are mainly focused on electron transfer and bulk Li+ diffusion. Nonetheless, the desolvation behavior, which is considered as the rate-limiting process for charge-storage, is rarely studied. Herein, we designed a nitridation layer on the surface of Wadsley-Roth phase FeNb11O29 (FNO-x@N) to act as a desolvation promoter. Theoretical calculations demonstrate that the adsorption and desolvation of solvated Li+ is efficiently improved at FNO-x@N/electrolyte interphase, leading to the reduced desolvation energy barrier. Moreover, the nitridation layer can also help to prevent solvent cointercalation during Li+ insertion, leading to advantageous shrinkage of block area and reduced volume change of lattice cell during cycling. Consequently, FNO-x@N exhibits a high-rate capacity of 129.7 mAh g-1 with negligible capacity decay for 10 000 cycles.

12.
Small ; 17(35): e2102400, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34310031

RESUMO

The instability of interfacial solid-electrolyte interphase (SEI) layer of metallic sodium (Na) anode during cycles results in the rapid capacity decay of sodium metal batteries (SMBs). Herein, the concept of interfacial protection engineering of Na nanoparticles (Na-NPs) is proposed first to achieve stable, dendrite-free, and long-life SMB. Employing an ion-exchange strategy, conformal Sn-Na alloy-SEI on the interface of Na-NPs is constructed, forming Sn@Na-NPs. The stable alloy-based SEI layer possesses the following three advantages: 1) significantly enhancing the transport dynamics of Na+ ions and electrons; 2) enabling the well-distributed deposition of Na+ ions to avoid the growth of dendrites; and 3) protecting the Sn@Na-NPs anode from the attack of electrolyte, thereby reducing the parasitic reaction and boosting the Coulombic efficiency of SMBs. Because of these virtues, the symmetric Sn@Na-NPs cell shows an ultralow voltage hysteresis of 0.54 V at 10 mA cm-2 after 600 h. Paired with the Na3 V2 (PO4 )2 O2 F (NaVPF) cathode, the NaVPF-Sn@Na-NPs full cell exhibits an initial discharge capacity of 89.2 mAh g-1 at 1 C and a high capacity retention of 81.6% after 600 cycles.

13.
Chemistry ; 27(2): 512-536, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510710

RESUMO

Lithium shortage and the growing demand for electricity storage has encouraged researchers to look for new alternative energy-storage materials. Due to abundant potassium resources, similar redox potential to lithium metal, and low cost, potassium-ion batteries (PIBs), as one of the promising alternatives, have been applied in energy-storage research recently. However, PIBs do not have adequate competition in their electrochemical efficiency because the molar volume of potassium ions is higher than those in lithium and sodium ions. Therefore, for better application and development of PIBs, finding suitable anode and cathode materials is currently the most important task. The latest developments in electrode materials for PIBs have been outlined in depth in this review. It focuses on the structural design and synthetic methods for novel electrode materials, ingenious optimization and tuning strategies, and explains the intrinsic reaction mechanism. The effects of organic electrolytes and aqueous electrolytes on battery systems are compared and clarified. Finally, theoretical and viable insights are given to the challenges posed by the creation and practical application of PIBs in the future.

14.
Chemistry ; 27(35): 9031-9037, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33792104

RESUMO

Metal phosphates have been widely explored in lithium ion batteries and sodium ion batteries owing to high theoretical capacities, mild toxicity and low cost. However, their potassium ion battery applications are less reported due to the limited conductivity and the slow diffusion kinetics. Considering these drawbacks, novel structured M2 P2 O7 /C (M=Fe, Co, Ni) nanoflake composites are prepared through an organic-phosphors precursor-assisted solvothermal method and a subsequent high temperature annealing process. The designed Co2 P2 O7 /C composite exhibits the highest rate capacity with 502 mAh g-1 at 0.1 A g-1 and good cyclability for 900 cycles at 1 A g-1 and 2 A g-1 when compared with Ni and Fe based composites. The superior electrochemical performance can be attributed to their unique nanoparticle-assembled nanoflake structure, which can afford enough active sites for K+ intercalation. In addition, the robust pyrophosphate crystal structure and the in situ formed carbon composition also have positive effects on enhancing the long-term cycling performance and the electrode's conductivity. Finally, this organic-phosphors precursor induced simple approach can be applied for easy fabrication of other pyrophosphate/carbon hybrids as advanced electrodes.

15.
BMC Evol Biol ; 20(1): 142, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143637

RESUMO

BACKGROUND: Plants are easily affected by temperature variations, and high temperature (heat stress) and low temperature (cold stress) will lead to poor plant development and reduce crop yields. Therefore, it is very important to identify resistance genes for improving the ability of plants to resist heat stress or cold stress by using modern biotechnology. Members of the C-repeat binding factor/Dehydration responsive element-binding 1 (CBF/DREB1) protein family are related to the stress resistance of many plant species. These proteins affect the growth and development of plants and play vital roles during environmental stress (cold, heat, drought, salt, etc.). In this study, we identified CBF/DREB1 genes from 43 plant species (including algae, moss, ferns, gymnosperms, angiosperms) by using bioinformatic methods to clarify the characteristics of the CBF/DREB1 protein family members and their functions in potato under heat and cold stresses. RESULTS: In this study, we identified 292 CBF/DREB1 proteins from 43 plant species. However, no CBF/DREB1 protein was found in algae, moss, ferns, or gymnosperms; members of this protein family exist only in angiosperms. Phylogenetic analysis of all the CBF/DREB1 proteins revealed five independent groups. Among them, the genes of group I do not exist in eudicots and are found only in monocots, indicating that these genes have a special effect on monocots. The analysis of motifs, gene duplication events, and the expression data from the PGSC website revealed the gene structures, evolutionary relationships, and expression patterns of the CBF/DREB1 proteins. In addition, analysis of the transcript levels of the 8 CBF/DREB1 genes in potato (Solanum tuberosum) under low-temperature and high-temperature stresses showed that these genes were related to temperature stresses. In particular, the expression levels of StCBF3 and StCBF4 in the leaves, stems, and roots significantly increased under high-temperature conditions, which suggested that StCBF3 and StCBF4 may be closely related to heat tolerance in potato. CONCLUSION: Overall, members of the CBF/DREB1 protein family exist only in angiosperms and plays an important role in the growth and development of plants. In addition, the CBF/DREB1 protein family is related to the heat and cold resistance of potato. Our research revealed the evolution of the CBF/DREB1 family, and is useful for studying the precise functions of the CBF/DREB1 proteins when the plants are developing and are under temperature stress.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Plantas/genética , Solanum tuberosum , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Solanum tuberosum/genética , Estresse Fisiológico/genética , Temperatura
16.
Mol Biol Rep ; 47(9): 6679-6691, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32780253

RESUMO

Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which had guiding significance for further researching the precise functions of the Hsp90s.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Resposta ao Choque Frio/genética , Secas , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Genoma de Planta , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico/genética , Motivos de Nucleotídeos , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Alinhamento de Sequência , Solanum tuberosum/metabolismo
17.
BMC Genomics ; 20(1): 375, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088347

RESUMO

BACKGROUND: Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS: In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION: In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.


Assuntos
Proteínas de Transporte/genética , Análise de Sequência de RNA/métodos , Solanum tuberosum/metabolismo , Sequenciamento Completo do Genoma/métodos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Seleção Genética , Solanum tuberosum/química , Solanum tuberosum/genética , Estresse Fisiológico
18.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661866

RESUMO

Lateral organ boundaries domain (LBD) proteins belong to a particular class of transcription factors of lateral organ boundary (LOB) specific domains that play essential roles in plant growth and development. However, a potato phylogenetic analysis of the LBD family has not been fully studied by scholars and researchers. In this research, bioinformatics methods and the growth of potatoes were used to identify 43 StLBD proteins. We separated them into seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa and IIb. The number of amino acids encoded by the potato LBD family ranged from 94 to 327. The theoretical isoelectric point distribution ranged from 4.16 to 9.12 Kda, and they were distributed among 10 chromosomes. The results of qRT-PCR showed that the expression levels of StLBD2-6 and StLBD3-5 were up-regulated under drought stress in the stem. The expression levels of StLBD1-5 and StLBD2-6 were down-regulated in leaves. We hypothesized that StLBD1-5 was down-regulated under drought stress, and that StLBD2-6 and StLBD3-5 up-regulation might help to maintain the normal metabolism of potato and enhance the potatoes' resistance to drought.


Assuntos
Família Multigênica/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Solanum tuberosum/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Análise por Conglomerados , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica/fisiologia , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , RNA-Seq , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
19.
Small ; 10(24): 5035-41, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25102808

RESUMO

3D graphene interconnected frameworks homogeneously connected with a few-layer graphene film (3DG/FLG) constitute a novel hierarchical hybrid structure for anodes in lithium-ion batteries. The pore-rich 3D graphene network is favorable for Li(+) diffusion and electron transport, and the FLG is a non-metallic current collector that effectively collects/transports charge carriers from/to the 3D graphene network and provides an excellent scaffold to support the 3DG.

20.
Front Neurorobot ; 17: 1291875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111713

RESUMO

The visual perception model is critical to autonomous driving systems. It provides the information necessary for self-driving cars to make decisions in traffic scenes. We propose a lightweight multi-task network (Mobip) to simultaneously perform traffic object detection, drivable area segmentation, and lane line detection. The network consists of a shared encoder for feature extraction and two decoders for handling detection and segmentation tasks collectively. By using MobileNetV2 as the backbone and an extremely efficient multi-task architecture to implement the perception model, our network has great advantages in inference speed. The performance of the multi-task network is verified on a challenging public Berkeley Deep Drive(BDD100K) dataset. The model achieves an inference speed of 58 FPS on NVIDIA Tesla V100 while still maintaining competitive performance on all three tasks compared to other multi-task networks. Besides, the effectiveness and efficiency of the multi-task architecture are verified via ablative studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA