Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2308984120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874858

RESUMO

Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.


Assuntos
Melhoramento Vegetal , Poaceae , Poaceae/genética , Genoma , Evolução Molecular
2.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Biotechnol J ; 21(4): 806-818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587283

RESUMO

The green revolution was based on genetic modification of the gibberellin (GA) hormone system with "dwarfing" gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA-related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3-oxidase1 (GA3ox1) as an alternative semi-dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large-scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5-10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9-induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.


Assuntos
Giberelinas , Hordeum , Cotilédone , Hordeum/genética , Sistemas CRISPR-Cas/genética , Oxirredutases/genética , Alelos , Edição de Genes , Plântula/genética
4.
Plant Biotechnol J ; 21(10): 1990-2001, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589238

RESUMO

Plant breeding is constrained by trade-offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand-grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co-Expression Network Analysis (WGCNA) of spatial-temporal transcriptome profiles revealed two hub genes: RhtL1, a DELLA domain-free Rht-1 paralog, which was up-regulated in peduncle, and TaNGR5, an organ size regulator that was up-regulated in rachis, in taarf12 plants. The up-regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up-regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.


Assuntos
Edição de Genes , Triticum , Triticum/genética , Giberelinas , Melhoramento Vegetal , Agricultura , Grão Comestível/genética
5.
Phys Rev Lett ; 131(18): 186302, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977647

RESUMO

We reveal the gate-tunable Berry curvature dipole polarizability in Dirac semimetal Cd_{3}As_{2} nanoplates through measurements of the third-order nonlinear Hall effect. Under an applied electric field, the Berry curvature exhibits an asymmetric distribution, forming a field-induced Berry curvature dipole, resulting in a measurable third-order Hall voltage with a cubic relationship to the longitudinal electric field. Notably, the magnitude and polarity of this third-order nonlinear Hall effect can be effectively modulated by gate voltages. Furthermore, our scaling relation analysis demonstrates that the sign of the Berry curvature dipole polarizability changes when tuning the Fermi level across the Dirac point, in agreement with theoretical calculations. The results highlight the gate control of nonlinear quantum transport in Dirac semimetals, paving the way for promising advancements in topological electronics.

6.
Phys Rev Lett ; 130(1): 016301, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669212

RESUMO

Berry curvature dipole plays an important role in various nonlinear quantum phenomena. However, the maximum symmetry allowed for nonzero Berry curvature dipole in the transport plane is a single mirror line, which strongly limits its effects in materials. Here, via probing the nonlinear Hall effect, we demonstrate the generation of Berry curvature dipole by applied dc electric field in WTe_{2}, which is used to break the symmetry constraint. A linear dependence between the dipole moment of Berry curvature and the dc electric field is observed. The polarization direction of the Berry curvature is controlled by the relative orientation of the electric field and crystal axis, which can be further reversed by changing the polarity of the dc field. Our Letter provides a route to generate and control Berry curvature dipole in broad material systems and to facilitate the development of nonlinear quantum devices.


Assuntos
Eletricidade , Frutas
7.
Theor Appl Genet ; 137(1): 2, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072878

RESUMO

KEY MESSAGE: Two wheat-Ae. longissima translocation chromosomes (1BS·1SlL and 1SlS·1BL) were transferred into three commercial wheat varieties, and the new advanced lines showed improved bread-making quality compared to their recurrent parents. Aegilops longissima chromosome 1Sl encodes specific types of gluten subunits that may positively affect wheat bread-making quality. The most effective method of introducing 1Sl chromosomal fragments containing the target genes into wheat is chromosome translocation. Here, a wheat-Ae. longissima 1BS·1SlL translocation line was developed using molecular marker-assisted chromosome engineering. Two types of translocation chromosomes developed in a previous study, 1BS·1SlL and 1SlS·1BL, were introduced into three commercial wheat varieties (Ningchun4, Ningchun50, and Westonia) via backcrossing with marker-assisted selection. Advanced translocation lines were confirmed through chromosome in situ hybridization and genotyping by target sequencing using the wheat 40 K system. Bread-making quality was found to be improved in the two types of advanced translocation lines compared to the corresponding recurrent parents. Furthermore, 1SlS·1BL translocation lines displayed better bread-making quality than 1BS·1SlL translocation lines in each genetic background. Further analysis revealed that high molecular weight glutenin subunit (HMW-GS) contents and expression levels of genes encoding low molecular weight glutenin subunits (LMW-GSs) were increased in 1SlS·1BL translocation lines. Gliadin and gluten-related transcription factors were also upregulated in the grains of the two types of advanced translocation lines compared to the recurrent parents. This study clarifies the impacts of specific glutenin subunits on bread-making quality and provides novel germplasm resources for further improvement of wheat quality through molecular breeding.


Assuntos
Aegilops , Triticum , Humanos , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Translocação Genética , Pão/análise , Cromossomos Humanos Par 1/metabolismo , Glutens/genética , Glutens/metabolismo
8.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901844

RESUMO

Histone acetylation is the earliest and most well-characterized of post-translation modifications. It is mediated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Histone acetylation could change the chromatin structure and status and further regulate gene transcription. In this study, nicotinamide, a histone deacetylase inhibitor (HDACi), was used to enhance the efficiency of gene editing in wheat. Transgenic immature and mature wheat embryos harboring a non-mutated GUS gene, the Cas9 and a GUS-targeting sgRNA were treated with nicotinamide in two concentrations (2.5 and 5 mM) for 2, 7, and 14 days in comparison with a no-treatment control. The nicotinamide treatment resulted in GUS mutations in up to 36% of regenerated plants, whereas no mutants were obtained from the non-treated embryos. The highest efficiency was achieved when treated with 2.5 mM nicotinamide for 14 days. To further validate the impact of nicotinamide treatment on the effectiveness of genome editing, the endogenous TaWaxy gene, which is responsible for amylose synthesis, was tested. Utilizing the aforementioned nicotinamide concentration to treat embryos containing the molecular components for editing the TaWaxy gene, the editing efficiency could be increased to 30.3% and 13.3%, respectively, for immature and mature embryos in comparison to the 0% efficiency observed in the control group. In addition, nicotinamide treatment during transformation progress could also improve the efficiency of genome editing approximately threefold in a base editing experiment. Nicotinamide, as a novel approach, may be employed to improve the editing efficacy of low-efficiency genome editing tools such as base editing and prime editing (PE) systems in wheat.


Assuntos
Edição de Genes , Triticum , Edição de Genes/métodos , Triticum/genética , Sistemas CRISPR-Cas , Histonas/genética , Mutação
9.
J Integr Plant Biol ; 65(5): 1262-1276, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36534453

RESUMO

Seed dormancy is an important agronomic trait in crops, and plants with low dormancy are prone to preharvest sprouting (PHS) under high-temperature and humid conditions. In this study, we report that the GATA transcription factor TaGATA1 is a positive regulator of seed dormancy by regulating TaABI5 expression in wheat. Our results demonstrate that TaGATA1 overexpression significantly enhances seed dormancy and increases resistance to PHS in wheat. Gene expression patterns, abscisic acid (ABA) response assay, and transcriptome analysis all indicate that TaGATA1 functions through the ABA signaling pathway. The transcript abundance of TaABI5, an essential regulator in the ABA signaling pathway, is significantly elevated in plants overexpressing TaGATA1. Chromatin immunoprecipitation assay (ChIP) and transient expression analysis showed that TaGATA1 binds to the GATA motifs at the promoter of TaABI5 and induces its expression. We also demonstrate that TaGATA1 physically interacts with the putative demethylase TaELF6-A1, the wheat orthologue of Arabidopsis ELF6. ChIP-qPCR analysis showed that H3K27me3 levels significantly decline at the TaABI5 promoter in the TaGATA1-overexpression wheat line and that transient expression of TaELF6-A1 reduces methylation levels at the TaABI5 promoter, increasing TaABI5 expression. These findings reveal a new transcription module, including TaGATA1-TaELF6-A1-TaABI5, which contributes to seed dormancy through the ABA signaling pathway and epigenetic reprogramming at the target site. TaGATA1 could be a candidate gene for improving PHS resistance.


Assuntos
Fatores de Transcrição GATA , Triticum , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética
10.
Plant J ; 108(6): 1754-1767, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643010

RESUMO

Auxin signaling is essential for the development of grain size and grain weight, two important components for crop yield. However, no auxin/indole acetic acid repressor (Aux/IAA) has been functionally characterized to be involved in the development of wheat (Triticum aestivum L.) grains to date. Here, we identified a wheat Aux/IAA gene, TaIAA21, and studied its regulatory pathway. We found that TaIAA21 mutation significantly increased grain length, grain width, and grain weight. Cross-sections of mutant grains revealed elongated outer pericarp cells compared to those of the wild type, where the expression of TaIAA21 was detected by in situ hybridization. Screening of auxin response factor (ARF) genes highly expressed in early developing grains revealed that TaARF25 interacts with TaIAA21. In contrast, mutation of the tetraploid wheat (Triticum turgidum) ARF25 gene significantly reduced grain size and weight. RNA sequencing analysis revealed upregulation of several ethylene response factor genes (ERFs) in taiaa21 mutants which carried auxin response cis-elements in their promoter. One of them, ERF3, was upregulated in the taiaa21 mutant and downregulated in the ttarf25 mutant. Transactivation assays showed that ARF25 promotes ERF3 transcription, while mutation of TtERF3 resulted in reduced grain size and weight. Analysis of natural variations identified three TaIAA21-A haplotypes with increased allele frequencies in cultivars relative to landraces, a signature of breeding selection. Our work demonstrates that TaIAA21 works as a negative regulator of grain size and weight development via the ARF25-ERFs module and is useful for yield improvement in wheat.


Assuntos
Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas , Frequência do Gene , Variação Genética , Haplótipos , Mutação , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas/genética , Análise de Sequência de RNA , Tetraploidia , Triticum/crescimento & desenvolvimento
11.
Plant Biotechnol J ; 20(4): 777-793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873799

RESUMO

STAUROSPORINE AND TEMPERATURE SENSITIVE3 (STT3) is a catalytic subunit of oligosaccharyltransferase, which is important for asparagine-linked glycosylation. Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat. However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unclear. In this study, we identified TaSTT3a and TaSTT3b, two STT3 subunit genes from wheat and reported their functional roles in wheat defense against R. cerealis and increasing grain weight. The transcript abundance of TaSTT3b-2B was associated with the degree of wheat resistance to R. cerealis and induced by both R. cerealis and exogenous jasmonic acid (JA). Overexpression of TaSTT3b-2B significantly enhanced resistance to R. cerealis, grain weight, and JA content in transgenic wheat subjected to R. cerealis stress, while silencing of TaSTT3b-2B compromised resistance of wheat to R. cerealis. Transcriptomic analysis showed that TaSTT3b-2B affected the expression of a series of defense-related genes and JA biosynthesis-related genes, as well as genes coding starch synthase and sucrose synthase. Application of exogenous JA elevated expression levels of the abovementioned defense- and grain weight-related genes, and rescuing the resistance of TaSTT3b-2B-silenced wheat to R. cerealis, while pretreatment with sodium diethyldithiocarbamate, an inhibitor of JA synthesis, attenuated the TaSTT3b-2B-mediated resistance to R. cerealis, suggesting that TaSTT3b-2B played critical roles in regulating R. cerealis resistance and grain weight via JA biosynthesis. Altogether, this study reveals new functional roles of TaSTT3b-2B in regulating plant innate immunity and grain weight, and illustrates its potential application value for wheat molecular breeding.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia , Triticum/metabolismo
12.
Plant Biotechnol J ; 20(1): 75-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487615

RESUMO

The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein ß and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.


Assuntos
Proteínas de Domínio MADS , Triticum , Flores , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
13.
Theor Appl Genet ; 135(7): 2423-2435, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644815

RESUMO

KEY MESSAGE: New translocation lines with T6V#4S·6AL in the Ph1 and ph1b backgrounds were developed with improved inheritance of powdery mildew resistance. The wheat-Dasypyrum villosum T6V#4S·6DL translocation line Pm97033, which exhibits strong powdery mildew (PM) resistance, was developed many years ago, but has limited application in wheat breeding. One of the major reasons for this is that the translocation chromosome has low transmission rate, which makes it difficult to obtain ideal genotype through recombination with other elite agronomic traits in a limited segregating population. Further modifications are thus needed to make better use of this genetic resource. In this study, Pm97033 and the T6V#2S·6AL translocation line NY-W were hybridized with the CS ph1b mutant, and two F1 hybrids were hybridized with each other. Then, plants homozygous for the ph1b deletion carrying the alien chromosome arm(s) 6V#2S and 6V#4S were identified from the segregating populations using molecular markers. New T6V#4S·6AL and T6V#2-6V#4S·6AL translocations were identified by molecular markers and confirmed by genomic in situ hybridization (GISH). Individuals that were heterozygous or homozygous for the translocation chromosome in Ph1 and ph1b backgrounds were obtained. The ratio of PM resistance vs. susceptibility in the self-pollinated heterozygous plants was 3:1, and the phenotype was completely consistent with the KASP genotyping. Thus, the new translocation chromosomes had higher transmission rate than the original T6V#4S·6DL, and so can be effectively applied in breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Poaceae/genética , Translocação Genética , Triticum/genética
14.
Nano Lett ; 21(5): 2026-2032, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33606545

RESUMO

Topological materials that possess spin-momentum locked surface states provide an ideal platform to manipulate the quantum spin states by electrical means. However, an antisymmetric magnetoresistance (MR) superimposed on the spin-polarized transport signals is usually observed in the spin potentiometric measurements of topological materials, rendering more power loss and reduced signal-to-noise ratio. Here we reveal the mechanism of surface-bulk interaction for the observed antisymmetric linear MR in the spin transport of Dirac semimetal Cd3As2 nanoplates. The antisymmetric linear MR can be eliminated through sample surface modifications. As a consequence, clean signals of charge current induced spin-polarized transport are observed, robust up to room temperature. The purification of spin signals can be attributed to the isolation of surface and bulk transport channels via forming a charge depletion layer with surface modifications. This surface engineering strategy should be valuable for high-performance spintronic devices on topological materials.

15.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233359

RESUMO

Common wheat, Triticum aestivum, is the most widely grown staple crop worldwide. To catch up with the increasing global population and cope with the changing climate, it is valuable to breed wheat cultivars that are tolerant to abiotic or shade stresses for density farming. Arabidopsis LONG HYPOCOTYL IN FAR-RED 1 (AtHFR1), a photomorphogenesis-promoting factor, is involved in multiple light-related signaling pathways and inhibits seedling etiolation and shade avoidance. We report that overexpression of AtHFR1 in wheat inhibits etiolation phenotypes under various light and shade conditions, leading to shortened plant height and increased spike number relative to non-transgenic plants in the field. Ectopic expression of AtHFR1 in wheat increases the transcript levels of TaCAB and TaCHS as observed previously in Arabidopsis, indicating that the AtHFR1 transgene can activate the light signal transduction pathway in wheat. AtHFR1 transgenic seedlings significantly exhibit tolerance to osmotic stress during seed germination compared to non-transgenic wheat. The AtHFR1 transgene represses transcription of TaFT1, TaCO1, and TaCO2, delaying development of the shoot apex and heading in wheat. Furthermore, the AtHFR1 transgene in wheat inhibits transcript levels of PHYTOCHROME-INTERACTING FACTOR 3-LIKEs (TaPIL13, TaPIL15-1B, and TaPIL15-1D), downregulating the target gene STAYGREEN (TaSGR), and thus delaying dark-induced leaf senescence. In the field, grain yields of three AtHFR1 transgenic lines were 18.2-48.1% higher than those of non-transgenic wheat. In summary, genetic modification of light signaling pathways using a photomorphogenesis-promoting factor has positive effects on grain yield due to changes in plant architecture and resource allocation and enhances tolerances to osmotic stress and shade avoidance response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Fitocromo/genética , Fitocromo/metabolismo , Melhoramento Vegetal , Plântula/metabolismo , Triticum/metabolismo
16.
New Phytol ; 231(2): 834-848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769506

RESUMO

TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
17.
Plant Cell Rep ; 40(7): 1155-1170, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33950277

RESUMO

KEY MESSAGE: The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat. Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants. Ornithine aminotransferase (OAT) is pyridoxal-5-phosphate dependent enzyme involved in plant proline biosynthesis. During stress condition, proline is synthesized via glutamate and ornithine pathways. The OAT is the key enzyme in ornithine pathway. In this study, an OAT gene AtOAT from Arabidopsis was expressed in wheat for its functional characterization under drought, salinity, and heat stress conditions. We found that the expression of AtOAT enhanced the drought and salt stress tolerances of wheat by increasing the proline content and peroxidase activity. In addition, it was confirmed that the expression of AtOAT also played a partial tolerance to heat stress in the transgenic wheat plants. Moreover, quantitative real-time PCR (qRT-PCR) analysis showed that the transformation of AtOAT up-regulated the expression of the proline biosynthesis associated genes TaOAT, TaP5CS, and TaP5CR, and down-regulated that of the proline catabolism related gene TaP5CDH in the transgenic plants under stress conditions. Moreover, the genes involved in ornithine pathway (Orn-OAT-P5C/GSA-P5CR-Pro) were up-regulated along with the up-regulation of those genes involved in glutamate pathway (Glu-P5CS-P5C/GSA-P5CR-Pro). Therefore, we concluded that the expression of AtOAT enhanced wheat abiotic tolerance via modifying the proline biosynthesis by up-regulating the expression of the proline biosynthesis-associated genes and down-regulating that of the proline catabolic gene under stresses condition.


Assuntos
Proteínas de Arabidopsis/genética , Ornitina-Oxo-Ácido Transaminase/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Triticum/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Plantas Geneticamente Modificadas/genética , Prolina/genética , Prolina/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/fisiologia , Triticum/genética
18.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502234

RESUMO

The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative WOX genes were identified. Most of the identified WOX genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach. Parts of WOX genes in Triticum aestivum were confirmed by the specific PCR markers using a set of Triticum. durum-T. aestivum genome D substitution lines. All of these identified WOX proteins could be grouped into three clades, similar to those in rice and Arabidopsis. WOX family members were conserved among these Triticeae plants; all of them contained the HOX DNA-binding homeodomain, and WUS clade members contained the characteristic WUS-box motif, while only WUS and WOX9 contained the EAR motif. The RNA-seq and qPCR analysis revealed that the TaWOX genes had tissue-specific expression feature. From the expression patterns of TaWOX genes during immature embryo callus production, TaWOX9 is likely closely related with the regulation of regeneration process in T. aestivum. The findings in this study could provide a basis for evolution and functional investigation and practical application of the WOX family genes in Triticeae species.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/genética , Sequência de Aminoácidos , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
19.
Plant Mol Biol ; 102(1-2): 225-237, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820284

RESUMO

KEY MESSAGE: The specific and high-level expression of 1Ax1 is determined by different promoter regions. HMW-GS synthesis occurs in aleurone layer cells. Heterologous proteins can be stored in protein bodies. High-molecular-weight glutenin subunit (HMW-GS) is highly expressed in the endosperm of wheat and relative species, where their expression level and allelic variation affect the bread-making quality and nutrient quality of flour. However, the mechanism regulating HMW-GS expression remains elusive. In this study, we analyzed the distribution of cis-acting elements in the 2659-bp promoter region of the HMW-GS gene 1Ax1, which can be divided into five element-enriched regions. Fragments derived from progressive 5' deletions were used to drive GUS gene expression in transgenic wheat, which was confirmed in aleurone layer cells, inner starchy endosperm cells, starchy endosperm transfer cells, and aleurone transfer cells by histochemical staining. The promoter region ranging from - 297 to - 1 was responsible for tissue-specific expression, while fragments from - 1724 to - 618 and from - 618 to - 297 were responsible for high-level expression. Under the control of the 1Ax1 promoter, heterologous protein could be stored in the form of protein bodies in inner starchy endosperm cells, even without a special location signal. Our findings not only deepen our understanding of glutenin expression regulation, trafficking, and accumulation but also provide a strategy for the utilization of wheat endosperm as a bioreactor for the production of nutrients and metabolic products.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Glutens/biossíntese , Glutens/genética , Regiões Promotoras Genéticas/genética , Triticum/genética , Pão , Endosperma/metabolismo , Farinha , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Amido/metabolismo
20.
BMC Plant Biol ; 20(1): 187, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349679

RESUMO

BACKGROUND: Ornithine aminotransferase (OAT, EC:2.6.1.13), alternatively known as ornithine delta aminotransferase (δOAT), is a pyridoxal phosphate (PLP)-dependent enzyme involved in the conversion of ornithine into glutamyl-5-semi-aldehyde (GSA) and vice versa. Up till now, there has been no study on OAT in wheat despite the success of its isolation from rice, maize, and sorghum. This study focuses on identification and molecular characterization of OAT in wheat. RESULTS: In total, three homeologous OAT genes in wheat genome were found on chromosome group 5, named as TaOAT-5AL, TaOAT-5BL, and TaOAT-5DL. Sequence alignment between gDNA and its corresponding cDNA obtained a total of ten exons and nine introns. A phylogenetic tree was constructed and results indicated that OATs shared highly conserved domains between monocots and eudicots, which was further illustrated by using WebLogo to generate a sequence logo. Further subcellular localization analysis indicated that they functioned in mitochondria. Protein-protein interactions supported their role in proline biosynthesis through interactions with genes, such as delta 1-pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR), involved in the proline metabolic pathway. Promoter analysis exposed the presence of several stress responsive elements, implying their involvement in stress regulation. Expression profiling illustrated that TaOAT was highly induced in the wheat plants exposed to drought or salt stress condition. Upregulated expression of TaOATs was observed in stamens and at the heading stage. A potential role of TaOAT genes during floret development was also revealed. Furthermore, the transgenic plants overexpressing TaOAT showed enhanced tolerance to drought stress by increasing proline accumulation. In addition, salt tolerance of the transgenic plants was also enhanced. CONCLUSION: TaOATs genes were involved in proline synthesis and nitrogen remobilization because they interacted with genes related to proline biosynthesis enzymes and arginine catabolism. In addition, TaOAT genes had a role in abiotic stress tolerance and a potential role in floret development. The results of this study may propose future research in the improvement of wheat resistance to abiotic stresses.


Assuntos
Genes de Plantas , Ornitina-Oxo-Ácido Transaminase/genética , Proteínas de Plantas/genética , Triticum/genética , Cromossomos de Plantas , Secas , Filogenia , Proteínas de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Poliploidia , Regiões Promotoras Genéticas , Cloreto de Sódio/farmacologia , Transcriptoma , Triticum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA