Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32260493

RESUMO

The effects of engineered nanoparticles (ENPs) on heavy metal fate and biotoxicity in farmland soil are mostly unknown. A flooding-drying simulation experiment was conducted to study the effects of three typical metal oxide nanoparticles (TiO2-NPs, ZnO-NPs and CuO-NPs) on the chemical speciation of heavy metals and micronutrient bioavailability in paddy soil. The results showed that the addition of ZnO-NPs and CuO-NPs caused significant increases in soil pH, Eh and EC after a 90-d flooding-drying process. ZnO-NPs and CuO-NPs addition caused clearly increase in the Zn and Cu concentrations in the acid-soluble fraction, Fe/Mn oxides-bound fraction and organic-bound fraction, leading to higher bioavailability in the soil. DTPA-extractable Zn and Cu increased to 184.6 mg kg-1 and 145.3 mg kg-1 in the maximum ZnO-NPs and CuO-NPs concentration treatments (500 mg kg-1). TiO2-NPs promoted the transformation of Mn from a Fe/Mn oxides-bound fraction to an acid-soluble fraction. Soil Cd bioavailability obviously decreased in the TiO2-NPs treatment but increased in the ZnO-NPs and CuO-NPs treatments.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Poluentes do Solo , Disponibilidade Biológica , Nanopartículas Metálicas/química , Metais Pesados/química , Micronutrientes , Óxidos , Solo , Poluentes do Solo/química
2.
Environ Sci Pollut Res Int ; 26(22): 23119-23128, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183760

RESUMO

With the widespread use of metal oxide nanoparticles (MNPs), agricultural soil is gradually becoming a primary sink for MNPs. The effect of these nanoparticles on the fate and the toxicity of co-existing heavy metals is largely unknown. In this paper, pot experiments were conducted to evaluate the impact of ZnO nanoparticles (ZnO-NPs) on Cd toxicity and bioaccumulation in a soil-rice system. Different amounts of ZnO-NPs were added to three different levels of Cd-contaminated paddy soil (L-Cd, 1.0 mg kg-1; M-Cd, 2.5 mg kg-1; H-Cd, 5.0 mg kg-1). The results showed that the addition of ZnO-NPs significantly increased the soil pH value, and the soil pH value increased with the increase in ZnO-NP concentration. Reductions in plant height and biomass under Cd stress were recovered and increased after the addition of ZnO-NPs; the addition of ZnO-NP promoted rice biomass increased by 13~22% and 25~43% in the M-Cd and H-Cd groups, respectively, compared with that of the respective control treatment. A high concentration of ZnO-NPs could increase the concentration of bioavailable Cd in rhizosphere soil. In the L-Cd group, the Cd concentration of the rice in the L-Z500 treatment increased to 0.51 mg kg-1, exceeding the limit for acceptable Cd concentrations in rice of China (0.2 mg kg-1). This work revealed that ZnO-NPs could improve plant growth, especially in the early-growth stage, and alleviate the toxic effects of Cd. However, the addition of high-concentration (500 mg kg-1) ZnO-NPs in the lower Cd pollution soil could significantly facilitate the accumulation of Cd by Oryza sativa L.


Assuntos
Cádmio/análise , Nanopartículas Metálicas/análise , Metais Pesados/análise , Oryza/crescimento & desenvolvimento , Poluentes do Solo/análise , Agricultura , Biomassa , China , Nanopartículas Metálicas/química , Metais Pesados/química , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA