Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(5): 3027-3038, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053405

RESUMO

BACKGROUND: To improve the quality of red starter wine, this study explored the effects of baking red kojic rice at varying temperatures on the physicochemical characteristics of red starter wine. Baking was predicated on understanding crucial enzyme activities and starch granule structure of red kojic rice at 75, 95, and 105 °C, leading to the production of three red starter wine variants (BHQW1, BHQW2, and BHQW3). RESULTS: The results revealed an increased alcohol (increase 0.50%), total sugar (increase 0.14 g L-1 ), and total acid (increase 0.54 g L-1 ) content in red starter wine fermented using baked red kojic rice compared with the control group (wine fermented with unbaked rice, HQW). Furthermore, both the 105 °C baked red kojic rice and its resulting BHQW3 demonstrated significantly higher red color values than HQW (increase 2.03 U g-1 and 0.15 U mL-1 respectively). The highest lovastatin content was presented in red kojic rice baked at 105 °C and its corresponding fermented wine (1420.63 ± 507.9 µg g-1 and 3368.87 ± 228.16 µg L-1 respectively). Additionally, BHQW groups displayed higher total flavonoids and phenols content than HQW. Regarding antioxidant capacity, all BHQW groups showed stronger overall antioxidant capacity than HQW. The determination of volatile components revealed the highest content of volatile compounds in BHQW2 (2621.19 ± 548.24 µg L-1 ) and significantly higher volatile esters in BHQW1 (254.46 ± 16.63 µg L-1 ). Moreover, 16 volatile compounds were identified only in BHQW groups, including isoamyl caprylate, 2-ethylhexyl alcohol, and benzaldehyde. CONCLUSION: Our findings suggested that the baking technique of red kojic rice could enhance the quality of red starter wine through enhancing antioxidant properties, increasing functional components, and enriching volatile flavor compounds, thus providing a foundation for new techniques in red starter wine production. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Vinho , Vinho/análise , Oryza/química , Antioxidantes , Temperatura , Flavonoides , Etanol
2.
Int J Biol Macromol ; 273(Pt 2): 133126, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876243

RESUMO

Connective tissue is an important component of meat products that provides support to animal muscles. Hydrogels are considered a promising alternative to connective tissues and simulate actual products by adjusting the gel texture and mouthfeel. This study used soybean protein isolate (SPI), corn starch (CS), konjac glucomannan (KGM), and seaweed powder (SP) as raw materials to examine the effect of different added SP and KGM concentrations on the gel texture. The G' of the gel increased five-fold when the SP and KGM concentration was increased from 1 % to 3 %. The results of mechanical property tests showed that with the addition of SP, the gel hardness increased from 316.00 g to 1827.23 g and the tensile strength increased from 0.027 MPa to 0.089 MPa. Sensory evaluation showed that the samples with 2 % SP and KGM presented the highest overall acceptability score and the most significant similarity to real connective tissue. The connective tissue simulants exhibited excellent water-holding capacity (>90 %), significantly increasing their juiciness. SEM indicated that 2 % KGM addition improved gel network structure stability. The results demonstrate the potential of seaweed polysaccharide-derived hydrogels as connective tissue mimics. This provides a new strategy for the preparation of high mechanical strength hydrogels and lays the foundation for structural diversification of plant-based meat.

3.
Gels ; 10(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391441

RESUMO

Composite emulsion gel can effectively mimic animal adipose tissue. In this study, composite emulsion gels composed of soy protein isolates and konjac glucomannan (KGM) were prepared as plant-based cubic fat substitutes (CFS). The effects of CFS on the quality and structure of pork patties were investigated in terms of the proximate composition, lipid oxidation stability, technological characteristics, color, sensory attributes, texture, thermo-rheological behavior, and microstructure. CFS samples composed of various ratios of KGM were added to lean meat patties to ascertain the optimal CFS composition for its potential replacement of pork back fat in patties. The addition of CFS containing 7.0% KGM was found to decrease the hardness of the lean meat patties by 71.98% while simultaneously improving their sensory quality. The replacement of pork back fat with CFS also reduced the fat content of the patties to as little as 3.65%. Furthermore, the addition of CFS enhanced the technological characteristics, lipid oxidation stability, and surface color of the fat-replaced patties, with no significant impact on their overall acceptability. The gel network of the patties was shown to be fine and remained compact as the fat replacement ratio increased to 75%, while the texture parameters, storage modulus, and fractal dimension all increased. Quality and structure improvements may allow the composite emulsion gels to replace fat in pork patties to support a healthy diet. This study may be beneficial for the application and development of plant-based cubic fat substitutes.

4.
Nat Genet ; 55(1): 144-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581701

RESUMO

Networks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.8 million edges in more than 1,400 functional subnetworks, demonstrating an extensive network divergence of duplicated genes. We applied this map to identify factors regulating flowering time and identified 2,651 genes enriched in eight subnetworks. We validated the functions of 20 genes, including 18 with previously unknown connections to flowering time in maize. Furthermore, we uncovered a flowering pathway involving histone modification. The multi-omics integrative network map illustrates the principles of how molecular networks connect different types of genes and potential pathways to map a genome-wide functional landscape in maize, which should be applicable in a wide range of species.


Assuntos
Proteômica , Zea mays , Zea mays/genética , Multiômica , Genômica , Genes de Plantas
5.
Nat Genet ; 54(11): 1736-1745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266506

RESUMO

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Adaptação Fisiológica/genética , Sequência de Bases , Alelos , Variação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA