Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-12, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189352

RESUMO

As the world population rises, the demand for protein increases, leading to a widening gap in protein supply. There is an unprecedented interest in the development of alternative proteins, but their allergenicity has raised consumer concerns. This review aims to highlight and correlate the current research status of allergenicity studies on alternative proteins based on previously published studies. Current research keywords, hotspots and trends in alternative protein sensitization were analyzed using a mixed-method approach that combined bibliometric analysis and literature review. According to the bibliometric analysis, current research is primarily focused on food science, agriculture, and immunology. There are significant variations in the type and amount of allergens found in alternative proteins. A significant amount of research has been focused on studying plant-based proteins and the cross-reactivity of insect proteins. The allergenicity of alternative proteins has not been studied extensively or in depth. The allergenicity of other alternative proteins and the underlying mechanisms warrant further study. In addition, the lack of a standardized allergy assessment strategy calls for additional efforts by international organizations and collaborations among different countries. This review provides new research and regulatory perspectives for the safe utilization of alternative proteins in human food systems.

2.
J Perianesth Nurs ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38727655

RESUMO

PURPOSE: The purpose of this study was to develop a discharge assessment scale tailored for outpatients undergoing sedative anesthesia treatment in the ambulatory postanesthesia care unit and validate its agreement with the Post-Anesthetic Discharge Scoring System. DESIGN: The Delphi method. METHODS: A Delphi survey was conducted with 30 experts focusing on the evaluation of outpatient discharges following treatment under ambulatory anesthesia. Subsequently, a cross-sectional observational study employing convenience sampling selected 2,579 outpatients who had undergone painless ambulatory gastrointestinal endoscopy at a tertiary hospital to analyze the level of agreement with the Post-Anesthesia Discharge Scoring System. FINDINGS: The study conducted three rounds of expert consultations to create the ambulatory discharge assessment scale. Twenty-five experts from 12 provinces and municipalities in our country were interviewed. The discharge assessment form encompassed five aspects: consciousness level, vital signs, directional stability, mobility, and adverse reactions. According to the scale, if the total score exceeded 9 points, with none of the items scoring 0 points, the ambulatory patient could be discharged from the hospital with the accompaniment of family members. Patients assessed using this newly constructed scale were able to leave the hospital earlier compared to those assessed using the comparative scale. No significant differences were observed in vital signs at the time of discharge or the occurrence of adverse events within 24 hours after the procedure. CONCLUSIONS: This assessment tool for discharging ambulatory patients after the ambulatory anesthesia from the postanesthesia outpatient care unit can be considered a valuable addition to formalize the discharge process in outpatient services.

3.
Small ; 19(29): e2207343, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058127

RESUMO

Drug resistance in pathogenic bacteria has become a major threat to global health. The misuse of antibiotics has increased the number of resistant bacteria in the absence of rapid, accurate, and cost-effective diagnostic tools. Here, an amplification-free CRISPR-Cas12a time-resolved fluorescence immunochromatographic assay (AFC-TRFIA) is used to detect drug-resistant Salmonella. Multi-locus targeting in combination crRNA (CcrRNA) is 27-fold more sensitive than a standalone crRNA system. The lyophilized CRISPR system further simplifies the operation and enables one-pot detection. Induction of nucleic acid fixation via differentially charged interactions reduced the time and cost required for flowmetric chromatography with enhanced stability. The induction of nucleic acid fixation via differentially charged interactions reduces the time and cost required for flowmetric chromatography with enhanced stability. The platform developed for the detection of drug-resistant Salmonella has an ultra-sensitive detection limit of 84 CFU mL-1 within 30 min, with good linearity in the range of 102 -106 CFU mL-1 . In real-world applications, spiked recoveries range from 76.22% to 145.91%, with a coefficient of variation less than 10.59%. AFC-TRFIA offers a cost-effective, sensitive, and virtually equipment-independent platform for preventing foodborne illnesses, screening for drug-resistant Salmonella, and guiding clinical use.


Assuntos
Doenças Transmitidas por Alimentos , Ácidos Nucleicos , Humanos , Antibacterianos , Fluorescência , Salmonella/genética , Técnicas de Amplificação de Ácido Nucleico
4.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108665

RESUMO

Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.

5.
Food Microbiol ; 115: 104328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567621

RESUMO

Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.


Assuntos
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Sorogrupo , Transcriptoma , Testes de Sensibilidade Microbiana , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Metabolômica , Farmacorresistência Bacteriana Múltipla/genética
6.
Ecotoxicol Environ Saf ; 264: 115456, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714035

RESUMO

Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and ß diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.


Assuntos
Metaboloma , Microbiota , Animais , Camundongos , Esporos Fúngicos , Metabolômica , Agricultura , Material Particulado
7.
Small ; 18(9): e2105089, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34841656

RESUMO

Emerging photocatalytic technology promises to provide an effective solution to the global energy crisis and environmental pollution. Graphite carbon nitride (g-C3 N4 ) has gained extensive attention in the scientific community due to its excellent physical and chemical properties, attractive electronic band structure, and low cost. In this paper, research progress in design strategies for g-C3 N4 -based photocatalysts in the past five years is reviewed from the perspectives of nanostructure construction, element doping, and heterostructure construction. To clarify the relationship between application requirements and structural design, variations in the morphology, electronic energy band structure, light absorption capacity, as well as interfacial charge transfer caused by various modification strategies are discussed in detail. The recent applications of g-C3 N4 -based photocatalysts for pollutant degradation and bacterial disinfection are reviewed, as well as the antimicrobial activity and degradation mechanisms. Finally, current challenges and future development directions for the practical application of g-C3 N4 -based photocatalysts are tentatively discussed.


Assuntos
Desinfecção , Poluentes Ambientais , Bactérias , Catálise
8.
Crit Rev Food Sci Nutr ; : 1-14, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239314

RESUMO

Fumonisins comprise structurally related metabolites mainly produced by Fusarium verticillioides and Fusarium proliferatum. Contamination with fumonisins causes incalculable damage to the economy and poses a great risk to animal and human health. Fumonisins and their covert products are found in cereals and cereal products. Food processing significantly affects the degradation of toxins and the formation of covert toxins. However, studies on fumonisins and their covert mycotoxins remain inadequate. This review aims to summarize changes in fumonisins and the generation of covert fumonisins during processing. It also investigates the toxicity and determination methods of fumonisins and covert fumonisins, and elucidates the factors affecting fumonisins and their covert forms during processing. In addition to the metabolic production by plants and fungi, covert fumonisins are mainly produced by covalent or noncovalent binding, complexation, or physical entrapment of fumonisins with other substances. The toxicity of covert fumonisins is similar to that of free fumonisins and is a non-negligible hazard. Covert fumonisins are commonly found in food matrices, and methods to analyze them have yet to be improved. Food processing significantly affects the conversion of fumonisins to their covert toxins.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226776

RESUMO

Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.

10.
Crit Rev Food Sci Nutr ; 62(25): 6887-6907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33830835

RESUMO

With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.


Assuntos
Hipersensibilidade Alimentar , Qualidade de Vida , Alérgenos/análise , Alimentos , Análise de Alimentos , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/etiologia , Humanos
11.
Crit Rev Food Sci Nutr ; 62(18): 4951-4969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33663294

RESUMO

Mycotoxins are metabolites produced by fungi growing in food or feed, which can produce toxic effects and seriously threaten the health of humans and animals. Mycotoxins are commonly found in food and feed, and are of significant concern due to their hepatotoxicity, nephrotoxicity, carcinogenicity, mutagenicity, and ability to damage the immune and reproductive systems. Traditional physical and chemical detoxification methods to treat mycotoxins in food and feed products have limitations, such as loss of nutrients, reagent residues, and secondary pollution to the environment. Thus, there is an urgent need for new detoxification methods to effectively control mycotoxins and treat mycotoxin pollution. In recent years, microbial detoxification technology has been widely used for the degradation of mycotoxins in food and feed because this approach offers the potential for treatment with high efficiency, low toxicity, and strong specificity, without damage to nutrients. This article reviews the application of microbial detoxification technology for removal of common mycotoxins such as Aflatoxin, Ochratoxin, Zearalenone, Deoxynivalenol, and Fumonisins, and discusses the development trend of this important technology.


Assuntos
Fumonisinas , Micotoxinas , Zearalenona , Ração Animal/análise , Animais , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Fumonisinas/toxicidade , Micotoxinas/análise , Zearalenona/toxicidade
12.
Ecotoxicol Environ Saf ; 236: 113466, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390688

RESUMO

Zearalenone (ZEN), one of the most contaminated Fusarium toxins worldwide, is very common in contaminating wheat, corn oil and other foods. People are more vulnerable to ZEN exposure with more daily caloric intake, yet little is known about the combined effect of different dietary patterns with mycotoxins. This study aimed to compare the effects of long-term ZEN exposure on the overall biochemical landscape of the "gut-blood-liver axis" under normal diet and high-fat diet (HFD) using a combined multi-omics approach. The results indicated that ZEN exposure, possibly via the phenylalanine metabolic pathway, led to dysbiosis of mouse flora, suppression of short-chain fatty acids (SCFAS) metabolism, systemic inflammatory responses, and disturbances in serum and liver metabolism, which were exacerbated in synergy with HFD and ultimately led to a more severe state of lipid metabolism in the liver. We further found that ZEN exposure attenuated the indole-3-propionic acid (IPA) metabolic pathway, enhanced 2-hydroxybutyric acid metabolism in serum, and attenuated ß-alanine metabolism in liver which was positively correlated with the abundance of Prevotellaceae UCG-004, Prevotellaceae UCG-001, and Prevotellaceae NK3B31 groups. The results highlighted the damaging effects of ZEN on the gut-blood-liver axis under different dietary patterns, which might serve as a reference for future studies exploring the combined effects of fungal toxins and multiple dietary patterns.


Assuntos
Micotoxinas , Tricotecenos , Zearalenona , Animais , Dieta , Humanos , Fígado , Camundongos , Micotoxinas/metabolismo , Zearalenona/toxicidade
13.
Crit Rev Food Sci Nutr ; 61(22): 3819-3835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32885986

RESUMO

Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Animais , Técnicas de Cultura de Células em Três Dimensões , Microbiologia de Alimentos , Humanos , Toxinas Marinhas
14.
Crit Rev Food Sci Nutr ; 60(2): 201-224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30569743

RESUMO

Due to the significant growth of food production, the potential likelihood of food contamination is increasing. Foodborne illness caused by bacterial pathogens has considerably increased over the past decades, while at the same time, the species of harmful microorganisms also varied. Conventional bacterial culturing methods have been unable to satisfy the growing requirement for food safety inspections and food quality assurance. Therefore, rapid and simple detection methods are urgently needed. The loop-mediated isothermal amplification (LAMP) technology is a highly promising approach for the rapid and sensitive detection of pathogens, which allows nucleic acid amplification under isothermal conditions. The integration of the LAMP assay onto a microfluidic chip is highly compatible with point-of-care or resource-limited settings, as it offers the capability to perform experiments in combination with high screening efficiency. Here, we provide an overview of recent advances in LAMP-based microfluidic chip technology for detecting pathogens, based on real-time or endpoint determination mechanisms. We also discuss the promoting aspects of using the LAMP technique in a microfluidic platform, to supply a guideline for further molecular diagnosis and genetic analysis.


Assuntos
Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos , Microfluídica , Contaminação de Alimentos , Humanos , Técnicas de Amplificação de Ácido Nucleico
15.
Compr Rev Food Sci Food Saf ; 19(6): 3084-3105, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337057

RESUMO

Aging is an inevitable process characterized by the accumulation of degenerative damage, leading to serious diseases that affect human health. Studies on aging aim to develop pre-protection or therapies to delay aging and age-related diseases. A preventive approach is preferable to clinical treatment not only to reduce investment but also to alleviate pain in patients. Adjusting daily diet habits to improve the aging condition is a potentially attractive strategy. Fruits and vegetables containing active compounds that can effectively delay the aging process and reduce or inhibit age-related degenerative diseases have been identified. The signaling pathways related to aging in Caenorhabditis elegans are evolutionarily conserved; thus, studying antiaging components by intervening senescence process may contribute to the prevention and treatment of age-related diseases in humans. This review focuses on the effects of food-derived extracts or purified substance on antiaging in nematodes, as well as the underlying mechanisms, on the basis of several major signaling pathways and key regulatory factors in aging. The aim is to provide references for a healthy diet guidance and the development of antiaging nutritional supplements. Finally, challenges in the use of C. elegans as the antiaging evaluation model are discussed, together with the development that potentially inspire novel strategies and research tools.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Caenorhabditis elegans/fisiologia , Transdução de Sinais
19.
J Agric Food Chem ; 72(17): 10046-10054, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648503

RESUMO

Poisonous mushrooms containing α-amatoxin can be lethal, making it imperative to develop a rapid and sensitive detection method for α-amatoxin. Utilizing the DNA tetrahedral structure as its foundation, the aptamer allows controlled density and orientation. Consequently, we designed aptamer tetrahedral functionalized magnetic beads that specifically target α-amanitin to release complementary DNA (C-DNA) strands. These strands were then employed as primers to initiate rolling circle amplification (RCA) with fluorescent dyes. The combination of SYBR Green I detection probes facilitated the amplification of the detection signal, enhancing the detection sensitivity of the aptasensor. The calculated detection limit was determined to be 3 ng/mL, a magnitude lower than that of other aptasensors by 2 orders of magnitude. The aptasensor integrates the advantages of high sensitivity and specificity, offering a simple and reliable rapid detection method for α-amanitin analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Alfa-Amanitina/química , Nanoestruturas/química , DNA/química , Agaricales/química
20.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557103

RESUMO

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Fosfatidilinositol 3-Quinases , Tricotecenos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Hep G2 , Micotoxinas/toxicidade , Micotoxinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA