Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138184

RESUMO

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Assuntos
Colite , RNA de Transferência , Transferência Adotiva , Animais , Proliferação de Células/genética , Colite/genética , Camundongos , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Linfócitos T/metabolismo
2.
Immunity ; 57(3): 528-540.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417442

RESUMO

RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Antígeno CTLA-4 , Fatores de Transcrição Forkhead/genética , Ácido Láctico/metabolismo , Linfócitos do Interstício Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral , Proteases Específicas de Ubiquitina/metabolismo
3.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640930

RESUMO

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Assuntos
Hidroxicolesteróis , Lisossomos , Macrófagos , Microambiente Tumoral , Animais , Hidroxicolesteróis/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Lisossomos/metabolismo , Microambiente Tumoral/imunologia , Fator de Transcrição STAT6/metabolismo , Adenilato Quinase/metabolismo , Camundongos Endogâmicos C57BL , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Reprogramação Metabólica
4.
Nat Immunol ; 20(7): 835-851, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160797

RESUMO

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Assuntos
Apresentação de Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Oncogenes , RNA Longo não Codificante/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Adenoma/genética , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Immunity ; 55(7): 1268-1283.e9, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35700739

RESUMO

The incidence and mortality rates of many non-reproductive human cancers are generally higher in males than in females. However, the immunological mechanism underlying sexual differences in cancers remains elusive. Here, we demonstrated that sex-related differences in tumor burden depended on adaptive immunity. Male CD8+ T cells exhibited impaired effector and stem cell-like properties compared with female CD8+ T cells. Mechanistically, androgen receptor inhibited the activity and stemness of male tumor-infiltrating CD8+ T cells by regulating epigenetic and transcriptional differentiation programs. Castration combined with anti-PD-L1 treatment synergistically restricted tumor growth in male mice. In humans, fewer male CD8+ T cells maintained a stem cell-like memory state compared with female counterparts. Moreover, AR expression correlated with tumor-infiltrating CD8+ T cell exhaustion in cancer patients. Our findings reveal sex-biased CD8+ T cell stemness programs in cancer progression and in the responses to cancer immunotherapy, providing insights into the development of sex-based immunotherapeutic strategies for cancer treatment.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Feminino , Humanos , Imunoterapia , Masculino , Camundongos , Neoplasias/terapia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Microambiente Tumoral
6.
Nature ; 592(7855): 606-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658717

RESUMO

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.


Assuntos
Mucosa Intestinal/citologia , MAP Quinase Quinase Quinase 2/metabolismo , Nicho de Células-Tronco , Células Estromais/citologia , Animais , Antígenos CD34 , Colite/patologia , Colite/prevenção & controle , Epigênese Genética , Feminino , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tetraspanina 28 , Trombospondinas/biossíntese , Trombospondinas/metabolismo , Antígenos Thy-1
8.
Nucleic Acids Res ; 51(W1): W129-W133, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078611

RESUMO

Driver mutations can contribute to the initial processes of cancer, and their identification is crucial for understanding tumorigenesis as well as for molecular drug discovery and development. Allostery regulates protein function away from the functional regions at an allosteric site. In addition to the known effects of mutations around functional sites, mutations at allosteric sites have been associated with protein structure, dynamics, and energy communication. As a result, identifying driver mutations at allosteric sites will be beneficial for deciphering the mechanisms of cancer and developing allosteric drugs. In this study, we provided a platform called DeepAlloDriver to predict driver mutations using a deep learning method that exhibited >93% accuracy and precision. Using this server, we found that a missense mutation in RRAS2 (Gln72 to Leu) might serve as an allosteric driver of tumorigenesis, revealing the mechanism of the mutation in knock-in mice and cancer patients. Overall, DeepAlloDriver would facilitate the elucidation of the mechanisms underlying cancer progression and help prioritize cancer therapeutic targets. The web server is freely available at: https://mdl.shsmu.edu.cn/DeepAlloDriver.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Regulação Alostérica/genética , Sítio Alostérico , Neoplasias/genética , Proteínas/química , Carcinogênese/genética , Mutação
9.
BMC Med ; 22(1): 24, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229080

RESUMO

BACKGROUND: Pyroptosis, mediated by gasdermins with the release of multiple inflammatory cytokines, has emerged as playing an important role in targeted therapy and immunotherapy due to its effectiveness at inhibiting tumor growth. Melanoma is one of the most commonly used models for immunotherapy development, though an inadequate immune response can occur. Moreover, the development of pyroptosis-related therapy and combinations with other therapeutic strategies is limited due to insufficient understanding of the role of pyroptosis in the context of different tumor immune microenvironments (TMEs). METHODS: Here, we present a computational model (pyroptosis-related gene score, PScore) to assess the pyroptosis status. We applied PScore to 1388 melanoma samples in our in-house cohort and eight other publicly available independent cohorts and then calculated its prognostic power of and potential as a predictive marker of immunotherapy efficacy. Furthermore, we performed association analysis for PScore and the characteristics of the TME by using bulk, single-cell, and spatial transcriptomics and assessed the association of PScore with mutation status, which contributes to targeted therapy. RESULTS: Pyroptosis-related genes (PRGs) showed distinct expression patterns and prognostic predictive ability in melanoma. Most PRGs were associated with better survival in metastatic melanoma. Our PScore model based on genes associated with prognosis exhibits robust performance in survival prediction in multiple metastatic melanoma cohorts. We also found PScore to be associated with BRAF mutation and correlate positively with multiple molecular signatures, such as KRAS signaling and the IFN gamma response pathway. Based on our data, melanoma with an immune-enriched TME had a higher PScore than melanoma with an immune-depleted or fibrotic TME. Additionally, monocytes had the highest PScore and malignant cells and fibroblasts the lowest PScore based on single-cell and spatial transcriptome analyses. Finally, a higher PScore was associated with better therapeutic efficacy of immune checkpoint blockade, suggesting the potential of pyroptosis to serve as a marker of immunotherapy response. CONCLUSIONS: Collectively, our findings indicate that pyroptosis is a prognostic factor and is associated with the immune response in metastatic melanoma, as based on multiomics data. Our results provide a theoretical basis for drug combination and reveal potential immunotherapy response markers.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/terapia , Multiômica , Piroptose/genética , Microambiente Tumoral/genética , Imunoterapia , Prognóstico
10.
Trends Genet ; 36(5): 318-336, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294413

RESUMO

Quantitative trait loci (QTL) analysis is an important approach to investigate the effects of genetic variants identified through an increasing number of large-scale, multidimensional 'omics data sets. In this 'big data' era, the research community has identified a significant number of molecular QTLs (molQTLs) and increased our understanding of their effects. Herein, we review multiple categories of molQTLs, including those associated with transcriptome, post-transcriptional regulation, epigenetics, proteomics, metabolomics, and the microbiome. We summarize approaches to identify molQTLs and to infer their causal effects. We further discuss the integrative analysis of molQTLs through a multi-omics perspective. Our review highlights future opportunities to better understand the functional significance of genetic variants and to utilize the discovery of molQTLs in precision medicine.


Assuntos
Epigenômica , Medicina de Precisão/tendências , Locos de Características Quantitativas/genética , Transcriptoma/genética , Genômica/tendências , Humanos , Metabolômica/tendências , Proteômica/tendências
11.
J Hepatol ; 78(4): 770-782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708811

RESUMO

BACKGROUND & AIMS: The tumour microenvironment (TME) is a crucial mediator of cancer progression and therapeutic outcome. The TME subtype correlates with patient response to immunotherapy in multiple cancers. Most previous studies have focused on the role of different cellular components in the TME associated with immunotherapy efficacy. However, the specific structure of the TME and its role in immunotherapy efficacy remain largely unknown. METHODS: We combined spatial transcriptomics with single-cell RNA-sequencing and multiplexed immunofluorescence to identify the specific spatial structures in the TME that determine the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC) receiving anti-PD-1 treatment. RESULTS: We identified a tumour immune barrier (TIB) structure, a spatial niche composed of SPP1+ macrophages and cancer-associated fibroblasts (CAFs) located near the tumour boundary, which is associated with the efficacy of immune checkpoint blockade. Furthermore, we dissected ligand‒receptor networks among malignant cells, SPP1+ macrophages, and CAFs; that is, the hypoxic microenvironment promotes SPP1 expression, and SPP1+ macrophages interact with CAFs to stimulate extracellular matrix remodelling and promote TIB structure formation, thereby limiting immune infiltration in the tumour core. Preclinically, the blockade of SPP1 or macrophage-specific deletion of Spp1 in mice led to enhanced efficacy of anti-PD-1 treatment in mouse liver cancer, accompanied by reduced CAF infiltration and increased cytotoxic T-cell infiltration. CONCLUSIONS: We identified that the TIB structure formed by the interaction of SPP1+ macrophages and CAFs is related to immunotherapy efficacy. Therefore, disruption of the TIB structure by blocking SPP1 may be considered a relevant therapeutic approach to enhance the therapeutic effect of immune checkpoint blockade in HCC. IMPACT AND IMPLICATIONS: Only a limited number of patients with hepatocellular carcinoma (HCC) benefit from tumour immunotherapy, which significantly hinders its application. Herein, we used multiomics to identify the spatial structure of the tumour immune barrier (TIB), which is formed by the interaction of SPP1+ macrophages and cancer-associated fibroblasts in the HCC microenvironment. This structure constrains immunotherapy efficacy by limiting immune cell infiltration into malignant regions. Preclinically, we revealed that blocking SPP1 or macrophage-specific deletion of Spp1 in mice could destroy the TIB structure and sensitize HCC cells to immunotherapy. These results provide the first key steps towards finding more effective therapies for HCC and have implications for physicians, scientists, and drug developers in the field of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos
12.
EMBO J ; 38(14): e99945, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304624

RESUMO

TGF-ß controls a variety of cellular functions during development. Abnormal TGF-ß responses are commonly found in human diseases such as cancer, suggesting that TGF-ß signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-ß signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-ß type I receptor (TßRI) through attenuating the interaction between Smurf2 and TßRI. Consequently, PTPN3 facilitates TGF-ß-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-ß signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-ß signaling during normal physiology and pathogenesis.


Assuntos
Neoplasias Hepáticas/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 3/genética , Proteína Tirosina Fosfatase não Receptora Tipo 3/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Transplante de Neoplasias , Fosforilação , Estabilidade Proteica , Receptor do Fator de Crescimento Transformador beta Tipo I/química , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteínas Smad/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
J Immunol ; 207(11): 2649-2659, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732466

RESUMO

Dendritic cells (DCs) are the most specialized APCs that play a critical role in driving Th2 differentiation, but the mechanism is not fully understood. Here we show that vacuolar protein sorting 33B (Vps33B) plays an important role in this process. Mice with Vps33b-specific deletion in DCs, but not in macrophages or T cells, were more susceptible to Th2-mediated allergic lung inflammation than wild-type mice. Deletion of Vps33B in DCs led to enhanced CD4+ T cell proliferation and Th2 differentiation. Moreover, Vps33B specifically restrained reactive oxygen species production in conventional DC1s to inhibit Th2 responses in vitro, whereas Vps33B in monocyte-derived DCs and conventional DC2s was dispensable for Th2 development in asthma pathogenesis. Taken together, our results identify Vps33B as an important molecule that mediates the cross-talk between DCs and CD4+ T cells to further regulate allergic asthma pathogenesis.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Pyroglyphidae/imunologia , Proteínas de Transporte Vesicular/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos
14.
Nucleic Acids Res ; 48(D1): D34-D39, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586392

RESUMO

Alternative polyadenylation (APA) is an RNA-processing mechanism on the 3' terminus that generates distinct isoforms of mRNAs and/or other RNA polymerase II transcripts with different 3'UTR lengths. Widespread APA affects post-transcriptional gene regulation in mRNA translation, stability, and localization, and exhibits strong tissue specificity. However, no existing database provides comprehensive information about APA events in a large number of human normal tissues. Using the RNA-seq data from the Genotype-Tissue Expression project, we systematically identified APA events from 9475 samples across 53 human tissues and examined their associations with multiple traits and gene expression across tissues. We further developed APAatlas, a user-friendly database (https://hanlab.uth.edu/apa/) for searching, browsing and downloading related information. APAatlas will help the biomedical research community elucidate the functions and mechanisms of APA events in human tissues.


Assuntos
Bases de Dados Genéticas , Genômica , Poliadenilação , Processamento de Terminações 3' de RNA , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Estabilidade de RNA , RNA Mensageiro , Software , Interface Usuário-Computador , Navegador
15.
Mol Cancer ; 20(1): 29, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557837

RESUMO

BACKGROUND: The four major RNA adenosine modifications, i.e., m6A, m1A, alternative polyadenylation, and adenosine-to-inosine RNA editing, are mediated mostly by the "writer" enzymes and constitute critical mechanisms of epigenetic regulation in immune response and tumorigenesis. However, the cross-talk and potential roles of these "writers" in the tumor microenvironment (TME), drug sensitivity, and immunotherapy remain unknown. METHODS: We systematically characterized mRNA expression and genetic alterations of 26 RNA modification "writers" in colorectal cancer (CRC), and evaluated their expression pattern in 1697 CRC samples from 8 datasets. We used an unsupervised clustering method to assign the samples into two patterns of expression of RNA modification "writers". Subsequently, we constructed the RNA modification "writer" Score (WM_Score) model based on differentially expressed genes (DEGs) responsible for the RNA modification patterns to quantify the RNA modification-related subtypes of individual tumors. Furthermore, we performed association analysis for WM_Score and characteristics of TME, consensus molecular subtypes (CMSs), clinical features, transcriptional and post-transcriptional regulation, drug response, and the efficacy of immunotherapy. RESULTS: We demonstrated that multi-layer alterations of RNA modification "writer" are associated with patient survival and TME cell-infiltrating characteristics. We identified two distinct RNA modification patterns, characterized by a high and a low WM_Score. The WM_Score-high group was associated with worse patient overall survival and with the infiltration of inhibitory immune cells, such as M2 macrophages, EMT activation, and metastasis, while the WM_Score-low group was associated with a survival advantage, apoptosis, and cell cycle signaling pathways. WM_Score correlated highly with the regulation of transcription and post-transcriptional events contributing to the development of CRC. In response to anti-cancer drugs, WM_Score highly negatively correlated (drug sensitive) with drugs which targeted oncogenic related pathways, such as MAPK, EGFR, and mTOR signaling pathways, positively correlated (drug resistance) with drugs which targeted in apoptosis and cell cycle. Importantly, the WM_Score was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these "writers" to aid the clinical benefits of immunotherapy. CONCLUSIONS: Our study is the first to provide a comprehensive analysis of four RNA modifications in CRC. We revealed the potential function of these writers in TME, transcriptional and post-transcriptional events, and identified their therapeutic liability in targeted therapy and immunotherapy. This work highlights the cross-talk and potential clinical utility of RNA modification "writers" in cancer therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Farmacogenética , Processamento Pós-Transcricional do RNA , Microambiente Tumoral/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Terapia Combinada , Biologia Computacional/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Farmacogenética/métodos , Prognóstico , Modelos de Riscos Proporcionais , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Transcrição Gênica , Transcriptoma , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
16.
PLoS Biol ; 16(11): e3000051, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30408026

RESUMO

Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Metaloproteínas/genética , Metaloproteínas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Autofagia/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metaloproteínas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 85-93, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33367479

RESUMO

Colorectal cancer (CRC) is one of the most lethal cancers worldwide. The expression of ß-arrestin2 (ß-Arr2, ARRB2) in CRC has been well investigated; however, its exact mechanism causing the cancer progression remains unclear. In this study, we discovered that the expression level of ARRB2 was significantly upregulated in CRC as compared to the normal tissues by employing the Cancer Genome Atlas (TCGA) data, western blot analysis, and immunohistochemistry. Furthermore, the level of ARRB2 was correlated with the patients' overall survival by Kaplan-Meier analysis. The higher expression of ARRB2 promoted CRC cell growth, enhanced the cell motility, and blocked cell apoptosis, which is crucial for tumor growth. Lastly, the suppression of ARRB2 expression was enough to attenuate the progression of CRC induced by azoxymethane/dextran sodium sulfate. Interestingly, we also found that the knockdown of ARRB2 decreased several cancer pathways mediated by the expression of Wilms tumor 1 associated protein (WTAP), which led to the inhibition of cell proliferation and migration. Altogether, our results demonstrated that ARRB2 promoted the growth and migration of CRC cells by regulating the WTAP expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fatores de Processamento de RNA/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Animais , Azoximetano/toxicidade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Sulfato de Dextrana/toxicidade , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Regulação para Cima
18.
Mol Cancer ; 19(1): 108, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576192

RESUMO

Emerging evidence has revealed significant roles for small nucleolar RNAs (snoRNAs) in tumorigenesis. However, the genetic and pharmacogenomic landscape of snoRNAs has not been characterized. Using the genotype and snoRNA expression data from The Cancer Genome Atlas, we characterized the effects of genetic variants on snoRNAs across 29 cancer types and further linked related alleles with patient survival as well as genome-wide association study risk loci. Furthermore, we characterized the impact of snoRNA expression on drug response in patients to facilitate the clinical utility of snoRNAs in cancer. We also developed a user-friendly data resource, GPSno (http://hanlab.uth.edu/GPSno), with multiple modules for researchers to visualize, browse, and download multi-dimensional data. Our study provides a comprehensive genetic and pharmacogenomic landscape of snoRNAs, which will shed light on future clinical considerations for the development of snoRNA-based targeted therapies.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/patologia , Farmacogenética , RNA Nucleolar Pequeno/genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico
19.
FASEB J ; 33(9): 10528-10537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260634

RESUMO

The circadian clock is important for cellular and organ function. However, its function in sickle cell disease (SCD), a life-threatening hemolytic disorder, remains unknown. Here, we performed an unbiased microarray screen, which revealed significantly altered expression of circadian rhythmic genes, inflammatory response genes, and iron metabolic genes in SCD Berkeley transgenic mouse lungs compared with controls. Given the vital role of period 2 (Per2) in the core clock and the unrecognized role of Per2 in SCD, we transplanted the bone marrow (BM) of SCD mice to Per2Luciferase mice, which revealed that Per2 expression was up-regulated in SCD mouse lung. Next, we transplanted the BM of SCD mice to period 1 (Per1)/Per2 double deficient [Per1/Per2 double knockout (dKO)] and wild-type mice, respectively. We discovered that Per1/Per2 dKO mice transplanted with SCD BM (SCD → Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death. Although we observed an increase of peripheral inflammatory cells, we did not detect differences in erythrocyte sickling. However, there was further lung damage due to elevated pulmonary congestion, inflammatory cell infiltration, iron overload, and secretion of IL-6 in lavage fluid. Overall, we demonstrate that Per1/Per2 is beneficial to counteract elevated systemic inflammation, lung tissue inflammation, and iron overload in SCD.-Adebiyi, M. G., Zhao, Z., Ye, Y., Manalo, J., Hong, Y., Lee, C. C., Xian, W., McKeon, F., Culp-Hill, R., D' Alessandro, A., Kellems, R. E., Yoo, S.-H., Han, L., Xia, Y. Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality.


Assuntos
Anemia Falciforme/mortalidade , Relógios Circadianos , Ritmo Circadiano/genética , Sobrecarga de Ferro/mortalidade , Proteínas Circadianas Period/fisiologia , Pneumonia/mortalidade , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Transplante de Medula Óssea , Perfilação da Expressão Gênica , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/terapia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/terapia
20.
RNA Biol ; 17(11): 1674-1679, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31432762

RESUMO

Transfer RNAs (tRNAs) play critical roles in human cancer. Currently, no database provides the expression landscape and clinical relevance of tRNAs across a variety of human cancers. Utilizing miRNA-seq data from The Cancer Genome Atlas, we quantified the relative expression of tRNA genes and merged them into the codon level and amino level across 31 cancer types. The expression of tRNAs is associated with clinical features of patient smoking history and overall survival, and disease stage, subtype, and grade. We further analysed codon frequency and amino acid frequency for each protein coding gene and linked alterations of tRNA expression with protein translational efficiency. We include these data resources in a user-friendly data portal, tRic (tRNA in cancer, https://hanlab.uth.edu/tRic/ or http://bioinfo.life.hust.edu.cn/tRic/), which can be of significant interest to the research community.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA de Transferência/genética , Software , Aminoácidos/genética , Códon , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA