Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 6(7): e1001028, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20661436

RESUMO

In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the successful completion of homolog-independent recombination is crucial for germ cell genomic stability.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Reparo do DNA , Instabilidade Genômica , Meiose , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos , Quebras de DNA de Cadeia Dupla , Células Germinativas/citologia , Mutação , Recombinação Genética
2.
Toxicology ; 423: 62-74, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102695

RESUMO

Lithocholic acid is a cytotoxic bile acid oxidized at the C-3 position by human cytochrome P450 3A (CYP3A) to form 3-ketocholanoic acid, but it is not known whether this metabolite is cytotoxic. Tocotrienols, in their various isomeric forms, are vitamin E analogues. In the present study, the hypothesis to be tested is that tocotrienols inhibit CYP3A-catalyzed lithocholic acid 3-oxidation, thereby influencing lithocholic acid cytotoxicity. Our enzyme catalysis experiments indicated that human recombinant CYP3A5 in addition to CYP3A4, liver microsomes, and intestinal microsomes catalyzed lithocholic acid 3-oxidation to form 3-ketocholanoic acid. Liver microsomes with the CYP3A5*1/*3 and CYP3A5*3/*3 genotypes were associated with decreased lithocholic acid 3-oxidation. α-Tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture, but not α-tocopherol (a vitamin E analogue), differentially inhibited lithocholic acid 3-oxidation catalyzed by liver and intestinal microsomes and recombinant CYP3A4 and CYP3A5. Compared to lithocholic acid 3-oxidation, CYP3A-catalyzed testosterone 6ß-hydroxylation was inhibited to a lesser extent by α-tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture. δ-Tocotrienol inhibited lithocholic acid 3-oxidation by a mixed mode. Like lithocholic acid, 3-ketocholanoic acid was also cytotoxic in human intestinal and liver cell models. δ-Tocotrienol decreased the extent of lithocholic acid 3-oxidation and this inhibition was associated with enhanced cytotoxicity in LS180 cells treated with δ-tocotrienol and lithocholic acid. Overall, vitamin E analogues inhibited in vitro lithocholic acid 3-oxidation in an isomer-dependent manner, with inhibition occurring with tocotrienols, but not α-tocopherol. The enhanced lithocholic acid toxicity by δ-tocotrienol in a human intestinal cell model warrants future investigations in vivo.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Ácido Litocólico/toxicidade , Microssomos/efeitos dos fármacos , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Feminino , Humanos , Masculino , Microssomos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA