Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Formos Med Assoc ; 121(2): 510-518, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34266707

RESUMO

BACKGROUND/PURPOSE: Tissue engineering in dentistry has fundamentally changed the way endodontists assess treatment options. Our previous study found that quercetin-contained mesoporous calcium silicate/calcium sulfate (MSCSQ) could induce hard tissue defect region regeneration. This study focused on whether the MSCSQ scaffold could also be effective in regulating odontogenesis and dentin regeneration. METHODS: In this study, we fabricated MSCSQ composite scaffolds using the 3D printing technique. The characteristics of the MSCSQ scaffold were examined by scanning electron microscope (SEM), and mechanical properties were also assessed. In addition, we evaluated the cell viability, cell proliferation, odontogenic-related protein expression, and mineralization behavior of human dental pulp stem cells (hDPSCs) cultured on different scaffolds. RESULTS: We found the precipitation of spherical-apatite on the scaffold surface rapidly in short periods. The in-vitro results for cell behavior revealed that hDPSCs with an MSCSQ scaffold were significantly higher in cell viability as followed time points. In addition, the specific makers of odontogenesis, such as DSPP and DMP-1 proteins, were induced obviously after culturing the hDPSCs on the MSCSQ scaffold. CONCLUSION: Our results demonstrated that MSCSQ scaffolds could enhance physicochemical and biological behaviors compared to mesoporous calcium silicate/calcium sulfate (MSCS) scaffolds. In addition, MSCSQ scaffolds also enhanced odontogenic and immuno-suppressive properties compared to MSCS scaffolds. These results indicated that MSCSQ scaffolds could be considered a potential bioscaffold for clinical applications and dentin regeneration.


Assuntos
Sulfato de Cálcio , Alicerces Teciduais , Compostos de Cálcio , Caproatos , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Humanos , Lactonas , Odontogênese , Osteogênese , Impressão Tridimensional , Silicatos , Sulfatos , Engenharia Tecidual
2.
J Formos Med Assoc ; 120(3): 991-996, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32900578

RESUMO

BACKGROUND/PURPOSE: Cone-beam computed tomography (CBCT) is a useful device in creating 3-dimensional images in the examining area of dentistry and is one of the most common clinical methods in detecting second mesiobuccal (MB2) canals in maxillary molars. The aim of this in vitro study was to compare the image quality of the small field of view (FOV) CBCT with different rotation arcs and scanning speeds in the use of detecting root canals. METHODS: A dentate human skull was scanned in Morita 3D Accuitomo 170 with 4 × 4 cm FOV under 5 mA and 90 kVp. Two different rotation arcs (360° and 180°) and three different scanning modes (slow-speed mode, standard mode and high-speed mode) combined into six different groups. Five different levels of axial sections were selected from each group. Five endodontic specialists rated the image quality by focusing on the sharpness of the MB2 canal of the upper right first molar and the surrounding structures. RESULTS: Despite the rotation arcs, all the observers gave excellent ratings to images taken with slow-speed mode. The high-speed mode taken with 360° and 180° got the second lowest and the lowest ratings, respectively. Under the same scanning speed, the rotation arc did not have a significant difference in image quality. CONCLUSION: Slow-speed mode is inevitable in maintaining adequate image quality during taking CBCT. However, endodontists can use the half rotation mode to significantly reduce radiation dose, exposure time, and still maintain sufficient image quality for root canal anatomy assessment.


Assuntos
Cavidade Pulpar , Tomografia Computadorizada de Feixe Cônico , Cavidade Pulpar/diagnóstico por imagem , Humanos , Maxila/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Tratamento do Canal Radicular , Raiz Dentária
3.
J Formos Med Assoc ; 119(12): 1835-1841, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32192793

RESUMO

BACKGROUND/PURPOSE: One effective way to deal with dentin hypersensitivity is to develop materials to seal the tubules. The porous bio-calcium carbonate-silica (BCCS) contained well-dispersed CaCO3 would form calcium phosphates to seal the dentinal tubules when mixed with an acidic solution. The acidic hydrothermal treatment and calcination to isolate the BCCS from the agricultural waste like equisetum grass was used, which would be more environmentally friendly than chemically synthesized mesoporous biomaterials. The aim of this study was to develop mesoporous materials from natural resources to occlude the dentinal tubules which could be more environmentally-friendly. METHODS: Dentin disc samples were prepared and treated with different methods as follows: (1) BCCS mixed with H3PO4; (2) BCCS mixed with KH2PO4; (3) Seal & Protect® was used as a comparison group. Sealing efficacy was evaluated by measuring the depths and percentages of precipitate occlusion in dentinal tubules with SEM. RESULTS: The N2 adsorption-desorption isotherm of the BCCS demonstrated a pore size of around 15.0 nm and a surface area of 61 m2g-1. From the results of occlusion percentage and depth, the BCCS treated with H3PO4 or KH2PO4 demonstrated promising sealing efficacy than the commercial product. CONCLUSION: This synthetic process used the agricultural waste equisetum grass to produce bio-calcium carbonate-silica would be environmentally friendly, which has great potential in treating exposed dentin related diseases.


Assuntos
Equisetum , Carbonato de Cálcio , Cristalização , Dentina , Sensibilidade da Dentina , Humanos , Microscopia Eletrônica de Varredura , Poaceae , Dióxido de Silício
4.
J Formos Med Assoc ; 118(12): 1610-1615, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31445847

RESUMO

BACKGROUND/PURPOSE: We have developed and investigated the partially-stabilized cements (PSC) with Zn for vital pulp therapy due to their short setting time and high cell biocompatibility. However, the effect of PSC with different concentrations of Zn on setting time and biocompatibility remained unknown. Therefore, the purpose of this study was to determine the optimal concentration of Zn to be synthesized with PSC for vital pulp therapy. METHODS: PSC with different weight percentages of Zn (5%, 7%, 10%) were synthesized to attain 5%Zn-PSC, 7%Zn-PSC, and 10%Zn-PSC. The initial and final setting times were measured using the Gillmore needles method, and the compressive strength tests were conducted using a universal testing machine. The phases of Zn-PSC powders were observed using an X-ray diffractometer (XRD). Human dental pulp stem cells (hDPSCs) were used to evaluate the biocompatibility and cytotoxicity of the materials via Alamar blue and LDH assays. Mineral trioxide aggregate (MTA) was used to be compared with Zn-PSC samples. RESULTS: The initial and final setting times of PSC with different concentrations of Zn were reduced considerably compared to those of MTA. The results also indicated that the initial and final setting times decreased as the weight % of Zn increased. 5%Zn-PSC had the highest compressive strength among all tested materials. 5%Zn-PSC samples also displayed comparatively higher cell biocompatibility than 7% and 10% Zn-PSC samples. However, there was no significant difference between the 5%Zn-PSC and MTA in cell biocompatibility. In addition, the results of the LDH release assay indicated a low level of cytotoxicity among all the test samples. CONCLUSION: 5%Zn-PSC has a shorter setting time, better mechanical properties, and good biocompatibility and thus it has great potential for vital pulp therapy.


Assuntos
Cimentos Dentários , Capeamento da Polpa Dentária , Polpa Dentária/citologia , Células-Tronco/efeitos dos fármacos , Zinco/farmacologia , Compostos de Alumínio , Materiais Biocompatíveis , Compostos de Cálcio , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Humanos , Teste de Materiais , Óxidos , Silicatos , Zinco/química
5.
Molecules ; 25(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878339

RESUMO

In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). The SHS process combined intermetallic combustion between Mo and Si with metallothermic reduction of MoO3 by Al in the presence of MgO. Experimental evidence showed that combustion velocity and temperature decreased with increasing molar content of Mo5Si3 and Mo3Si, and therefore, the flammability limit determined for the reaction at Mo5Si3 or Mo3Si/MgAl2O4 = 2.0. Based upon combustion wave kinetics, the activation energies, Ea = 68.8 and 63.8 kJ/mol, were deduced for the solid-state SHS reactions producing Mo5Si3- and Mo3Si-MgAl2O4 composites, respectively. Phase conversion was almost complete after combustion, with the exception of trivial unreacted Mo existing in both composites and a minor amount of Mo3Si in the Mo5Si3-MgAl2O4 composite. Both composites display a dense morphology formed by connecting MgAl2O4 crystals, within which micro-sized molybdenum silicide grains were embedded. For equimolar Mo5Si3- and Mo3Si-MgAl2O4 composites, the hardness and fracture toughness are 14.6 GPa and 6.28 MPa m1/2, and 13.9 GPa and 5.98 MPa m1/2, respectively.


Assuntos
Óxido de Alumínio/síntese química , Temperatura Alta , Óxido de Magnésio/síntese química , Molibdênio/química , Compostos de Silício/química , Óxido de Alumínio/química , Processamento de Imagem Assistida por Computador , Cinética , Óxido de Magnésio/química , Espectrometria por Raios X , Difração de Raios X
6.
J Dent Sci ; 19(1): 479-491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303841

RESUMO

Background/purpose: The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods: In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results: The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion: These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.

7.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837242

RESUMO

TiB2-MgAl2O4 composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti and boron, as well as a small amount of Al2O3 or MgO to serve as the combustion moderator. Four reaction systems were conducted and all of them were exothermic enough to proceed in the mode of self-propagating high-temperature synthesis (SHS). The reaction based on B2O3/Al/Mg thermite and diluted with MgO was the most exothermic, while that containing TiO2/Al/Mg thermite and Al2O3 as the diluent was the least. Depending on different thermites and diluents, the combustion front temperatures in a range from 1320 to 1720 °C, and combustion wave velocity from 3.9 to 5.7 mm/s were measured. The XRD spectra confirmed in situ formation of TiB2 and MgAl2O4. It is believed that MgAl2O4 was synthesized through a combination reaction between Al2O3 and MgO, both of which can be totally or partially produced from the metallothermic reduction of B2O3 or TiO2. The microstructure of the TiB2-MgAl2O4 composite exhibited fine TiB2 crystals surrounded by large densified MgAl2O4 grains. This study demonstrated an energy-saving and efficient route for fabricating MgAl2O4-containing composites.

8.
Materials (Basel) ; 16(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37763420

RESUMO

The fabrication of Ti3SiC2 from TiC-containing reactant compacts was investigated by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS). The initial sample composition was formulated based on (3 - x)Ti + ySi + (2 - x)C + xTiC + zAl, with stoichiometric parameters of x from 0 to 0.7, y = 1.0 and 1.2, and z = 0 and 0.1. For all samples studied, combustion was sufficiently exothermic to sustain the reaction in the SHS manner. Due to the dilution effect of TiC, combustion wave velocity and reaction temperature substantially decreased with TiC content. When compared with the TiC-free sample, the TiC-containing sample facilitated the formation of Ti3SiC2 and the TiC content of x = 0.5 produced the highest yield. Excess Si (y = 1.2) to compensate for the evaporation loss of Si during combustion and the addition of Al (z = 0.1) to promote the phase conversion were effective in improving the evolution of Ti3SiC2. All final products were composed of Ti3SiC2, TiC, and Ti5Si3. For the TiC-containing samples of x = 0.5, the weight fraction of Ti3SiC2 increased from 67 wt.% in the sample without extra Si and Al to 72 wt.% in the Si-rich sample of y = 1.2 and further up to 85 wt.% in the Si-rich/Al-added sample of y = 1.2 and z = 0.1. As-synthesized Ti3SiC2 grains were in a thin plate-like shape with a thickness of 0.5-1.0 µm and length of about 10 µm. Ti3SiC2 platelets were closely stacked into a layered structure.

9.
Materials (Basel) ; 14(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500890

RESUMO

Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants, Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si-, Mo5Si3- and MoSi2-MgAl2O4 composites with a broad compositional range. Reduction of MoO3 by Mg and Al is highly exothermic and produces MgO and Al2O3 as precursors of MgAl2O4. Molybdenum silicides are synthesized from the reactions of Si with both reduced and elemental Mo. Experimental evidence indicated that the reaction proceeded as self-propagating high-temperature synthesis (SHS) and the increase in silicide content weakened the exothermicity of the overall reaction, and therefore, lowered combustion front temperature and velocity. The XRD analysis indicated that Mo3Si-, Mo5Si3- and MoSi2-MgAl2O4 composites were well produced with only trivial amounts of secondary silicides. Based on SEM and EDS examinations, the morphology of synthesized composites exhibited dense and connecting MgAl2O4 crystals and micro-sized silicide particles, which were distributed over or embedded in the large MgAl2O4 crystals.

10.
Dent Mater ; 37(4): 682-689, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589270

RESUMO

OBJECTIVE: The lack of a PDL, which acts as an energy absorber, is a contributor to implants' early failure; however, these discrepancies are not well understood because of limited in vivo research. This study investigated the discrepancy in biomechanical behaviors between natural teeth and dental implants by detecting micro-movements in vivo. METHODS: We designed a device that could measure precisely mechanical behaviors such as creep, stress relaxation, and hysteresis by using load-control displacement on teeth and implants. We also compared energy dissipation between natural teeth and dental implants by subtracting the area of the hysteresis loop of natural teeth from that of dental implants. RESULTS: Biphasic curves with an initial phase of rapid response and a subsequent phase of slow response were confirmed in creep and stress relaxation curves for the load-time relationship in natural teeth. By contrast, the behavior of creep or stress relaxation was less prominent when the dental implants were tested. We observed that the periodontal ligament under an axial intrusive load of 300g in a loading rate 3g/s could dissipate the energy of 7.35±1.18×10-2 mJ, approximately 50 times that of the dental implants (1.47±1.22×10-3) with statistically significant (p<0.05). SIGNIFICANCE: We confirmed natural teeth could achieve greater energy dissipation compared to dental implants, which owe to that natural teeth exhibited fluid and viscoelastic properties.


Assuntos
Implantes Dentários , Dente , Fenômenos Biomecânicos , Ligamento Periodontal
11.
Dent Mater ; 36(6): 755-764, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32312480

RESUMO

OBJECTIVE: In vital pulp therapy (VPT), a barrier is created with appropriate capping to protect the remaining pulp and thus maintain pulp vitality. Here, we evaluated the feasibility of a biphasic calcium phosphate cement (CPC)-calcium sulfate hemihydrate (CSH) biomaterial containing simvastatin (Sim) and collagenase (Col) for VPT. METHODS: Combinations of varying CPC and CSH concentrations were analyzed for their handling properties and setting times, with their structures observed through scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). Drug release patterns of simvastatin and collagenase combined with CPC-CSH (CPC-CSH-Sim-Col) were also analyzed, followed by biocompatibility and bioactivity tests on human dental pulp stem cells (hDPSCs) and in vivo animal study in canine models; the in vivo results were obtained through microcomputed tomography and histological analysis. RESULTS: The results revealed that 70 wt% CPC (CPC7) with 30 wt% CSH (CSH3) exhibited optimal setting time and porous structure for clinical use. The cell viability and cytotoxicity analysis demonstrated that CPC7-CSH3 with or without simvastatin or collagenase did not injure hDPSCs. In vivo, the CPC7-CSH3-Sim-Col induced dentin bridge formation. SIGNIFICANCE: CPC7-CSH3-Sim-Col in this study has great potential as a VPT biomaterial to enhance the dentin bridge formation.


Assuntos
Materiais Biocompatíveis , Sulfato de Cálcio , Animais , Fosfatos de Cálcio , Colagenases , Polpa Dentária , Humanos , Ácido Hialurônico , Fosfatos , Sinvastatina/farmacologia , Microtomografia por Raio-X
12.
Materials (Basel) ; 13(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054126

RESUMO

The aim of this study was to evaluate the efficacy of bone regeneration in developed bioceramics composed of dicalcium phosphate and hydroxyapatite (DCP/HA). Critical bony defects were prepared in mandibles of beagles. Defects were grafted using DCP/HA or collagen-enhanced particulate biphasic calcium phosphate (TCP/HA/Col), in addition to a control group without grafting. To assess the efficacy of new bone formation, implant stability quotient (ISQ) values, serial bone labeling, and radiographic and histological percentage of marginal bone coverage (PMBC) were carefully evaluated four, eight, and 12 weeks after surgery. Statistically significant differences among the groups were observed in the histological PMBC after four weeks. The DCP/HA group consistently exhibited significantly higher ISQ values and radiographic and histological PMCB eight and 12 weeks after surgery. At 12 weeks, the histological PMBC of DCP/HA (72.25% ± 2.99%) was higher than that in the TCP/HA/Col (62.61% ± 1.52%) and control groups (30.64% ± 2.57%). After rigorously evaluating the healing of biphasic DCP/HA bioceramics with a critical size peri-implant model with serial bone labeling, we confirmed that neutralized bioceramics exhibiting optimal compression strength and biphasic properties show promising efficacy in fast bone formation and high marginal bone coverage in peri-implant bone defects.

13.
Polymers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610580

RESUMO

Vascular endothelial growth factor (VEGF) is one of the most crucial growth factors and an assistant for the adjustment of bone regeneration. In this study, a 3D scaffold is fabricated using the method of fused deposition modeling. Such a fabricated method allows us to fabricate scaffolds with consistent pore sizes, which could promote cellular ingrowth into scaffolds. Therefore, we drafted a plan to accelerate bone regeneration via VEGF released from the hydroxyapatite/calcium sulfate (HACS) scaffold. Herein, HACS will gradually degrade and provide a suitable environment for cell growth and differentiation. In addition, HACS scaffolds have higher mechanical properties and drug release compared with HA scaffolds. The drug release profile of the VEGF-loaded scaffolds showed that VEGF could be loaded and released in a stable manner. Furthermore, initial results showed that VEGF-loaded scaffolds could significantly enhance the proliferation of human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVEC). In addition, angiogenic- and osteogenic-related proteins were substantially increased in the HACS/VEGF group. Moreover, in vivo results revealed that HACS/VEGF improved the regeneration of the rabbit's femur bone defect, and VEGF loading improved bone tissue regeneration and remineralization after implantation for 8 weeks. All these results strongly imply that the strategy of VEGF loading onto scaffolds could be a potential candidate for future bone tissue engineering.

14.
Polymers (Basel) ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098145

RESUMO

A new root canal sealer was developed based on urethane acrylates using polycarbonate polyol (PCPO), a macrodiol prepared in the consumption of carbon dioxide as feedstock. The superior mechanical properties and biostability nature of PCPO-based urethane acrylates were then co-crosslinked with a difunctional monomer of tripropylene glycol diarylate (TPGDA) as sealers for resin matrix. Moreover, nanoscale silicate platelets (NSPs) immobilized with silver nanoparticles (AgNPs) and/or zinc oxide nanoparticles (ZnONPs) were introduced to enhance the antibacterial effect for the sealers. The biocompatibility and the antibacterial effect were investigated by Alamar blue assay and LDH assay. In addition, the antibacterial efficiency was performed by using Enterococcus faecalis (E. faecalis) as microbial response evaluation. These results demonstrate that the PCPO-based urethane acrylates with 50 ppm of both AgNP and ZnONP immobilized on silicate platelets, i.e., Ag/ZnO@NSP, exhibited great potential as an antibacterial composite for the sealer of root canal obturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA