RESUMO
BACKGROUND: Malaria is still endemic in South Korea. However, limited information is available on the current Anopheles breeding sites and the occurrence of insecticide resistance-associated genetic mutations and their distribution needed to control the malaria vector efficiently. METHODS: This study explored breeding sites of Anopheline adults in Gimpo-si, near the demilitarized zone (DMZ) in Gyeonggi-do province, South Korea, from 2022 to 2023. Genetic diversity was investigated based on the internal transcribed spacer (ITS2), cytochrome c oxidase subunit I (COI), and knockdown resistance (kdr) genes of Anopheles mosquitoes. A natural environment associated with the seasonal abundance of Anopheles larvae was characterized. RESULTS: Two breeding sites of Anopheles larvae and adults were found at a stream margin or shallow freshwater near the forest in Wolgot-myeon in Gimpo-si without cattle shed within 1 km and in Naega-myeon in Ganghwa-gun with cow shed within 100 m in 2022 and 2023, respectively. Both sites were located between the newly cultivated lands and the forest. Besides, both breeding sites were in the valley at a slight elevation of 60-70 m from ground lands and maintained the shadow all day. Overall, the Wolgot-myeon breeding site showed various Anopheles spp. larvae, including Anopheles sinensis. Naega-myeon, an additional breeding site found in 2023, had Anopheles sineroides larvae, and approximately 59.7% (89/149) of An. sinensis adults inhabited within a 100-m distance. The total collection, including larvae and adults, revealed that An. sinensis, Anopheles pullus, Anopheles kleini, An. sineroides, Anopheles belenrae, and Anopheles lindesayi accounted for 44.2% (118/267), 0.7% (2/267), 0.7% (2/267), 22.1% (59/267), 1.9% (5/267), and 30.3% (81/267), respectively. Furthermore, various kdr mutant genotypes (F/F, C/C, L/F, L/C and F/C) in An. sinensis, and the first kdr allele mutant (L/F1014) in An. belenrae were identified in South Korea. CONCLUSIONS: Two breeding sites of Anopheles larvae were studied in Wolgot-myeon and Naega-myeon. Various Anopheles spp. larvae were detected in both habitats, but overall, An. sinensis was the most prevalent adults in both study sites. The occurrence of kdr allele mutant of An. belenrae in South Korea was reported. Rigorous larvae monitoring of Anopheles spp., continuously updating information on Anopheles breeding sites, and understanding the environmental conditions of Anopheles habitats are required to develop an effective malaria control programme in South Korea.
Assuntos
Anopheles , Malária , Feminino , Animais , Bovinos , Anopheles/genética , Mosquitos Vetores/genética , República da Coreia/epidemiologia , Ecossistema , Florestas , Larva/genética , MutaçãoRESUMO
INTRODUCTION: The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS: Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS: It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS: The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Cães , Patos , Vírus da Influenza A/genética , Camundongos , FilogeniaRESUMO
Globally, point-of-care testing (POCT) is the most preferable on-site technique for disease detection and includes a rapid diagnostic test (RDT) and fluorescent immunochromatographic strip test (FICT). The testing kits are generally insufficient in terms of signal enhancement, which is a major drawback of this approach. Sensitive and timely on-site POCT methods with high signal enhancement are therefore essential for the accurate diagnosis of infectious diseases. Herein, we prepare cysteamine-gold coated carboxylated europium chelated nanoparticle (Cys Au-EuNPs)-mediated POCT for the detection of the H5N1 avian influenza virus (AIV). Commercial nanoparticles were used for comparison. The spectral characteristics, surface morphologies, functional groups, surface charge and stability of the Cys AuNPs, EuNPs, and Cys Au-EuNPs were confirmed by UV-visible spectrophotometry, fluorescence spectrometry, transmission electron microscope with Selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FTIR) and zeta potential analysis. The particle size distribution revealed an average size of ~130 ± 0.66 nm for the Cys Au-EuNPs. The Cys Au-EuNP-mediated RDT (colorimetric analysis) and FICT kit revealed a limit of detection (LOD) of 10 HAU/mL and 2.5 HAU/mL, respectively, for H5N1 under different titer conditions. The obtained LOD is eight-fold that of commercial nanoparticle conjugates. The photo luminance (PL) stability of ~3% the Cys Au-EuNPs conjugates that was obtained under UV light irradiation differs considerably from that of the commercial nanoparticle conjugates. Overall, the developed Cys Au-EuNPs-mediated dual-mode POCT kit can be used as an effective nanocomposite for the development of on-site monitoring systems for infectious disease surveillance.
Assuntos
Virus da Influenza A Subtipo H5N1 , Nanopartículas Metálicas , Animais , Cisteamina , Ouro/química , Nanopartículas Metálicas/química , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.
Assuntos
Vírus da Influenza A , Influenza Aviária , Nanopartículas Metálicas , Animais , Animais Selvagens , Galinhas , Európio , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , FilogeniaRESUMO
Antimalarial drugs play an important role in the control and treatment of malaria, a deadly disease caused by the protozoan parasite Plasmodium spp. The development of novel antimalarial agents effective against drug-resistant malarial parasites is urgently needed. The novel derivatives, SKM13-MeO and SKM13-F, were designed based on an SKM13 template by replacing the phenyl group with electron-donating (-OMe) or electron-withdrawing groups (-F), respectively, to reverse the electron density. A colorimetric assay was used to quantify cytotoxicity, and in vitro inhibition assays were performed on 3 different blood stages (ring, trophozoite, and schizonts) of P. falciparum 3D7 and the ring/mixed stage of D6 strain after synchronization. The in vitro cytotoxicity analysis showed that 2 new SKM13 derivatives reduced the cytotoxicity of the SKM13 template. SKM13 maintained the IC50 at the ring and trophozoite stages but not at the schizont stage. The IC50 values for both the trophozoite stage of P. falciparum 3D7 and ring/mixed stages of D6 demonstrated that 2 SKM13 derivatives had decreased antimalarial efficacy, particularly for the SKM13-F derivative. SKM13 may be comparably effective in ring and trophozoite, and electron-donating groups (-OMe) may be better maintain the antimalarial activity than electron-withdrawing groups (-F) in SKM13 modification.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , TrofozoítosRESUMO
The circulation of the H9N2 virus results in significant economic losses in the poultry industry, and its zoonotic transmission highlights the need for a highly sensitive and rapid diagnostic and detection system for this virus. In this study, the performance of lateral flow test strips for a fluorescent immunochromatographic test (FICT) was optimized for the diagnosis of H9N2 virus-infected animal samples. The novel monoclonal antibodies (McAbs) against influenza A H9 viruses were developed, and two categories of McAbs with linear and conformational epitopes were compared for the performance of rapid diagnostic performance in the presence of feces sample at different time points (2, 4, and 6 days) post-infection (dpi). The limit of detection (LOD) of FICT and Kd values were comparable between linear and conformational epitope McAbs. However, superior performance of linear epitope McAbs pairs were confirmed by two animal studies, showing the better diagnostic performance showing 100% relative sensitivity in fecal samples at 6 dpi although it showed less than 80% sensitivity in early infection. Our results imply that the comparable performance of the linear epitope McAbs can potentially improve the diagnostic performance of FICT for H9N2 detection in feces samples. This highly sensitive rapid diagnostic method can be utilized in field studies of broiler poultry and wild birds.
Assuntos
Fezes/virologia , Fluorescência , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Infecções por Orthomyxoviridae/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Animais , Galinhas , Testes Diagnósticos de Rotina , Feminino , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Limite de Detecção , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/virologiaRESUMO
BACKGROUND: When infected with the chikungunya virus (CHIKV), 3% to 28% of CHIKV-infected individuals remain asymptomatic, necessitating the development of improved high-throughput screening methods to overcome the limitations of molecular diagnostics or enzyme-linked immunosorbent assays (ELISAs). OBJECTIVE: In this study, two novel monoclonal antibodies (mAbs) targeting envelope 1 (E1) of CHIKV were developed and applied in a fluorescence-linked immunosorbent assay (FLISA) using coumarin-derived dendrimer as the fluorophore. METHODS: The performance of the FLISA was compared with that of ELISA. RESULTS: Using the two novel mAbs (2B5 and 2C8), FLISA could detect 1 × 105 PFU/mL of CHIKV, exhibiting a 2-fold lower limit of detection (LOD) compared to ELISA. The LOD of FICT corresponded to a comparative threshold value of 23.95 and 4 × 106 of RNA copy number/µL. In the presence of human sera and blood, virus detection by FLISA was 3-fold better than ELISA, with an LOD of 2 × 105 PFU/mL. Sera and blood interfered with the ELISA, resulting in 6 × 105 PFU/mL as the LOD. CONCLUSIONS: FLISA using two novel mAbs and coumarin-derived dendrimer is a superior diagnostic assay for detecting CHIKV in human sera and blood, compared to conventional ELISA.
Assuntos
Antígenos Virais/análise , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Fluorometria/métodos , Técnicas Imunoenzimáticas/métodos , Proteínas do Envelope Viral/análise , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vírus Chikungunya/imunologia , Humanos , Sensibilidade e EspecificidadeRESUMO
Dengue, one of the most prevalent illnesses caused by dengue viruses that are members of the genus Flavivirus, is a significant global health problem. However, similar clinical symptoms and high antigenic homologies with other Flaviviruses in the endemic area pose difficulties for differential diagnosis of dengue from other arbovirus infections. Here, we investigated four types of recombinant envelope protein domain III (DV-rED III) derived from four dengue virus (DENV) serotypes for diagnostic potential in detecting IgM in acute phase (mainly 2-3 days after onset of fever). Each independent DV-1, -3, and -4-rED III-ELISA showed less than 60% sensitivity, but the combined results of DV-1, -3, and -4-rED III-ELISA led to sensitivity of 81.82% (18/22) (95% CI, 59.72 to 94.81) and 100% specificity (46/46) (95% CI, 92.29 to 100.00) as each antigen compensated the other antigen-derived negative result. In conclusion, the independent combination of data derived from each recombinant antigen (DV1-, DV3-, and DV4-rED III) showed comparable efficacy for the detection of IgM in patients with acute-phase dengue infection.
Assuntos
Vírus da Dengue/imunologia , Dengue/diagnóstico , Testes Sorológicos/métodos , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Antivirais/imunologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/genética , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina M/imunologia , Masculino , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Testes Sorológicos/normas , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genéticaRESUMO
Human respiratory syncytial virus (RSV) is one of the most common viruses infecting the respiratory tracts of infants. The rapid and sensitive detection of RSV is important to minimize the incidence of infection. In this study, novel monoclonal antibodies (mAbs; B11A5 and E8A11) against RSV nucleoprotein (NP) were developed and applied to develop a rapid fluorescent immunochromatographic strip test (FICT), employing europium nanoparticles as the fluorescent material. For the FICT, the limits of detection of the antigen and virus were 1.25 µg/mL and 4.23 × 106 TCID50/mL, respectively, corresponding to 4.75 × 106 ± 5.8 ×105 (mean ± SD) RNA copy numbers per reaction mixture for RSV NP. A clinical study revealed a sensitivity of 90% (18/20) and specificity of 98.18% (108/110) for RSV detection when comparing the performance to that of reverse transcription polymerase chain reaction (RT-PCR), representing a 15% improvement in sensitivity over the SD Bioline rapid kit. This newly developed FICT could be a useful tool for the rapid diagnosis of RSV infection.
Assuntos
Cromatografia de Afinidade/métodos , Vírus Sincicial Respiratório Humano/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Antígenos/metabolismo , Pré-Escolar , Feminino , Fluorescência , Humanos , Imunoensaio , Lactente , Masculino , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: The widespread emergence of anti-malarial drug resistance has necessitated the discovery of novel anti-malarial drug candidates. In this study, chloroquine derivatives were evaluated for the improved anti-malarial activity. RESULTS: Novel two derivatives (SKM13 and SKM14) were synthesized based on the chloroquine (CQ) template containing modified side chains such as α,ß-unsaturated amides and phenylmethyl group. The selective index indicated that SKM13 was 1.28-fold more effective than CQ against the CQ-resistant strain Plasmodium falciparum. An in vivo mouse study demonstrated that SKM13 (20 mg/kg) could completely inhibit Plasmodium berghei growth in blood and increased the survival rate from 40 to 100% at 12 days after infection. Haematological parameters [red blood cell (RBC) count, haemoglobin level, and haematocrit level] were observed as an indication of clinical malarial anaemia during an evaluation of the efficacy of SKM13 in a 4-day suppression test. An in vivo study showed a decrease of greater than 70% in the number of RBC in P. berghei-infected mice over 12 days, but the SKM13 (20 mg/kg)-treated group showed no loss of RBC. CONCLUSIONS: CQ derivatives with substituents such as α,ß-unsaturated amides and phenylmethyl group have enhanced anti-malarial activity against the CQ-resistant strain P. falciparum, and SKM13 is an excellent anti-malarial drug candidate in mice model.
Assuntos
Antimaláricos/farmacologia , Cloroquina/análogos & derivados , Cloroquina/farmacologia , Malária/tratamento farmacológico , Animais , Cloroquina/química , Modelos Animais de Doenças , Feminino , Humanos , Malária/sangue , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacosRESUMO
Plasmodium lactate dehydrogenase (pLDH) is a strong target antigen for the determination of infection with Plasmodium species specifically. However, a more effective antibody is needed because of the low sensitivity of the current antibody in many immunological diagnostic assays. In this study, recombinant Plasmodium vivax LDH (PvLDH) was experimentally constructed and expressed as a native antigen to develop an effective P. vivax-specific monoclonal antibody (mAb). Two mAbs (2CF5 and 1G10) were tested using ELISA and immunofluorescence assays (IFA), as both demonstrated reactivity against pLDH antigen. Of the 2 antibodies, 2CF5 was not able to detect P. falciparum, suggesting that it might possess P. vivax-specificity. The detection limit for a pair of 2 mAbs-linked sandwich ELISA was 31.3 ng/ml of the recombinant antigen. The P. vivax-specific performance of mAbs-linked ELISA was confirmed by in vitro-cultured P. falciparum and P. vivax-infected patient blood samples. In conclusion, the 2 new antibodies possessed the potential to detect P. vivax and will be useful in immunoassay.
Assuntos
Anticorpos Monoclonais , L-Lactato Desidrogenase/imunologia , Malária Vivax/diagnóstico , Plasmodium vivax/enzimologia , Plasmodium vivax/imunologia , Animais , Anticorpos Monoclonais/sangue , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologiaRESUMO
Repeated interspecies transmission of H9N2 virus from poultry to humans and human infections transmitted via aerosols highlight the need for a highly sensitive, rapid diagnostic system for the detection of this virus. However, no such test exhibiting high performance has been developed. In this study, the performance of a smartphone-based rapid fluorescent diagnostic system (SRFDS) was optimized for the diagnosis of an H9N2-virus-infected animal. To suppress the nonspecific reactivity of the bioconjugate in oropharyngeal (OP) and cloacal (CL) samples derived from chickens, different blocking reagents were tested, and a mixture of casein and sucrose was found to be optimal. To assess the performance of SRFDS, OP and CL samples were obtained from specific-pathogen-free chickens and used for comparison of this method with real-time reverse transcription PCR (rRT-PCR) at time points of three, five, and seven days postinfection (dpi). The limit of detection of SRFDS was found to be 7.5 PFU/mL, which was 138-fold higher than that of a conventional colloidal-gold-based avian influenza rapid diagnostic test. In the animal study, the presence of viral antigen was monitored with SRFDS, and the relative sensitivity (relative to rRT-PCR results) was 94.44 % (17/18) and 95.23 % (20/21) in OP and CL specimens, respectively. The specificity of SRFDS was 100 %. These results imply that the diagnostic performance of SRFDS might be comparable to that of rRT-PCR for diagnosis of H9N2 in chickens and that this test can be used as a highly sensitive rapid diagnostic method in field studies on broiler poultry and wild birds.
Assuntos
Testes Diagnósticos de Rotina/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Smartphone/estatística & dados numéricos , Animais , Antígenos Virais/química , Antígenos Virais/metabolismo , Galinhas , Testes Diagnósticos de Rotina/instrumentação , Fluorescência , Vírus da Influenza A Subtipo H9N2/química , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Sensibilidade e Especificidade , Organismos Livres de Patógenos EspecíficosRESUMO
Toxoplasma gondii is an important opportunistic pathogen that causes toxoplasmosis, which has very few therapeutic treatment options. The most effective therapy is a combination of pyrimethamine and sulfadiazine; however, their utility is limited because of drug toxicity and serious side effects. For these reasons, new drugs with lower toxicity are urgently needed. In this study, the compound, (Z)-1-[(5-nitrofuran-2-yl)methyleneamino]-imidazolidine-2,4-dione (nitrofurantoin), showed anti-T. gondii effects in vitro and in vivo. In HeLa cells, the selectivity of nitrofurantoin was 2.3, which was greater than that of pyrimethamine (0.9). In T. gondii-infected female ICR mice, the inhibition rate of T. gondii growth in the peritoneal cavity was 44.7% compared to the negative control group after 4-day treatment with 100 mg/kg of nitrofurantoin. In addition, hematology indicators showed that T. gondii infection-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, biochemical parameters involved in liver injury, were reduced by nitrofurantoin significantly. Moreover, nitrofurantoin exerted significant effects on the index of antioxidant status, i.e., malondialdehyde (MDA) and glutathione (GSH). The nitrofurantoin-treated group inhibited the T. gondii-induced MDA levels while alleviating the decrease in GSH levels. Thus, nitrofurantoin is a potential anti-T. gondii candidate for clinical application.
Assuntos
Antiprotozoários/farmacologia , Nitrofurantoína/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Linhagem Celular Tumoral , Feminino , Glutationa/metabolismo , Células HeLa , Humanos , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/parasitologia , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Baço/efeitos dos fármacos , Toxoplasmose Animal/parasitologiaRESUMO
Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.
Assuntos
Coloides/química , Cor , Cristalização , Fótons , Poliestirenos/químicaRESUMO
After invasion of red blood cells, malaria matures within the cell by degrading hemoglobin avidly. For enormous protein breakdown in trophozoite stage, many efficient and ordered proteolysis networks have been postulated and exploited. In this study, a potential interaction of a 60-kDa Plasmodium falciparum (Pf)-heat shock protein (Hsp60) and Pf-calpain, a cysteine protease, was explored. Pf-infected RBC was isolated and the endogenous Pf-Hsp60 and Pf-calpain were determined by western blot analysis and similar antigenicity of GroEL and Pf-Hsp60 was determined with anti-Pf-Hsp60. Potential interaction of Pf-calpain and Pf-Hsp60 was determined by immunoprecipitation and immunofluorescence assay. Mizoribine, a well-known inhibitor of Hsp60, attenuated both Pf-calpain enzyme activity as well as P. falciparum growth. The presented data suggest that the Pf-Hsp60 may function on Pf-calpain in a part of networks during malaria growth.
Assuntos
Calpaína/metabolismo , Chaperonina 60/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Calpaína/genética , Chaperonina 60/química , Chaperonina 60/genética , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de SequênciaRESUMO
Discoidin domain receptor 2 (DDR2) is a fibrillar collagen receptor that is expressed in mesenchymal cells throughout the body. In the heart, DDR2 is selectively expressed on cardiac fibroblasts. We generated a germline DDR2 knockout mouse and used this mouse to examine the role of DDR2 deletion on heart structure and function. Echocardiographic measurements from null mice were consistent with those from a smaller heart, with reduced left ventricular chamber dimensions and little change in wall thickness. Fractional shortening appeared normal. Left ventricular pressure measurements revealed mild inotropic and lusitropic abnormalities that were accentuated by dobutamine infusion. Both body and heart weights from 10-wk-old male mice were ~20% smaller in null mice. The reduced heart size was not simply due to reduced body weight, since cardiomyocyte lengths were atypically shorter in null mice. Although normalized cardiac collagen mass (assayed by hydroxyproline content) was not different in null mice, the collagen area fraction was statistically higher, suggesting a reduced collagen density from altered collagen deposition and cross-linking. Cultured cardiac fibroblasts from null mice deposited collagen at a slower rate than wild-type littermates, possibly due to the expression of lower prolyl 4-hydroxylase α-isoform 1 enzyme levels. We conclude that genetic deletion of the DDR2 collagen receptor alters cardiac fibroblast function. The resulting perturbations in collagen deposition can influence the structure and function of mature cardiomyocytes.
Assuntos
Deleção de Genes , Mutação em Linhagem Germinativa , Ventrículos do Coração/anatomia & histologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Função Ventricular , Sequência de Aminoácidos , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Receptores com Domínio Discoidina , Dobutamina/farmacologia , Ecocardiografia , Ventrículos do Coração/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genéticaRESUMO
BACKGROUND: Due to limitation of conventional malaria diagnostics, including microscopy, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), alternative accurate diagnostics have been demanded for improvement of sensitivity and specificity. METHODS: Serially diluted Plasmodium LDH antigens, Plasmodium falciparum-infected human red blood cells (RBC) derived from in vitro culture or patient's samples were used for evaluation of the performance of fluorescence-linked immunosorbent assay (FLISA). Microscopic examination was used to determine parasite density and the performance of FLISA was compared to ELISA. Finally, sensitivity and specificity of FLISA was determined by human specimens infected with P. falciparum, Plasmodium vivax, Toxoplasma gondii, and amoebae. RESULTS: As a result of FLISA, the fluorescent intensity was highly correlated with antigen amount and FLISA was more sensitive than ELISA. FLISA detected at least 0.01 ng/ml of pLDH antigen, which showed 1,000-fold higher sensitivity than ELISA. In vitro-cultured P. falciparum was detected up to 20 parasite number/µL in FLISA but 5120 parasite number/µLin sandwich ELISA. In vitro P. falciparum-infected RBC number was highly correlated with fluorescent intensity (R2 = 0.979), showing that FLISA was reliable for detection of P. falciparum and available for quantification of parasite numbers. Furthermore, eighteen patient samples infected with P. falciparum (n = 9) and P. vivax (n = 9) showed 100% of sensitivity (18/18). FLISA showed 96.3% of specificity (26/27) because one sample of patient blood infected with T. gondii gave a false positive reactivity among healthy donors (n = 9), T. gondii-infected patients (n = 9), and amoeba-infected patients (n = 9). CONCLUSION: FLISA has a keen and high performance to detect malaria antigen, suggesting a potential assay as malaria immunodiagnostic.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/análise , Cumarínicos , Dendrímeros , Eritrócitos/parasitologia , Técnica Direta de Fluorescência para Anticorpo/métodos , Corantes Fluorescentes , Técnicas de Imunoadsorção , L-Lactato Desidrogenase/análise , Malária Falciparum/sangue , Malária Vivax/sangue , Parasitemia/sangue , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Sequência de Aminoácidos , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Fluorometria , Humanos , Técnicas Imunoenzimáticas , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/imunologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Dados de Sequência Molecular , Parasitemia/diagnóstico , Parasitemia/parasitologia , Plasmodium/enzimologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Sensibilidade e Especificidade , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
Toxoplasmosis, while often asymptomatic and prevalent as a foodborne disease, poses a considerable mortality risk for immunocompromised individuals during pregnancy. Point-of-care serological tests that detect specific IgG and IgM in patient sera are critical for disease management under limited resources. Despite many efforts to replace the T. gondii total lysate antigens (TLAs) by recombinant antigens (rAgs) in commercial kits, while IgG detection provides significant specificity and sensitivity, IgM detection remains comparatively low in sensitivity. In this study, we attempted to identify novel antigens targeting IgM in early infection, thereby establishing an IgM on-site detection kit. Using two-dimensional gel electrophoresis (2DE) and mouse serum immunoblotting, three novel antigens, including EF1γ, PGKI, and GAP50, were indicated to target T. gondii IgM. However, rAg EF1γ was undetectable by IgM of mice sera in Western blotting verification experiments, and ELISA coated with PGKI did not eliminate cross-reactivity, in contrast to GAP50. Subsequently, the lateral flow reaction employing a strip coated with 0.3 mg/mL purified rAg GAP50 and exhibited remarkable sensitivity compared with the conventional ELISA based on tachyzoite TLA, which successfully identified IgM in mouse sera infected with tachyzoites, ranging from 103 to 104 at 5 dpi and 104 at 7 dpi, respectively. Furthermore, by using standard T. gondii-infected human sera from WHO, the limit of detection (LOD) for the rapid fluorescence immunochromatographic test (FICT) using GAP50 was observed at 0.65 IU (international unit). These findings underline the particular immunoreactivity of GAP50, suggesting its potential as a specific biomarker for increasing the sensitivity of the FICT in IgM detection.
RESUMO
Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult. In this study, porous microgels have been fabricated using microfluidic channels to effectively culture NK cells. Microgel fabrication using microfluidics can be mass-produced in a short time and can be made in a uniform size. Microgels consist of photo cross-linkable polymers such as methacrylic gelatin (GelMa) and can be regulated via controlled GelMa concentrations. NK92 cell-laden three-dimensional (3D) microgels increase mRNA expression levels, NK92 cell proliferation, cytokine release, and anti-tumor efficacy, compared with two-dimensional (2D) cultures. In addition, the study confirms that 3D-cultured NK92 cells enhance anti-tumor effects compared with enhancement by 2D-cultured NK92 cells in the K562 leukemia mouse model. Microgels containing healthy NK cells are designed to completely degrade after 5 days allowing NK cells to be released to achieve cell-to-cell interaction with cancer cells. Overall, this microgel system provides a new cell culture platform for the effective culturing of NK cells and a new strategy for developing immune cell therapy.
RESUMO
Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.