Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Spine Surg ; 15(s1): 10-25, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34376493

RESUMO

The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.

2.
Cytotechnology ; 70(1): 185-192, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28799096

RESUMO

Cells are often characterized by their gene expression profile. However, commonly used methods to detect mRNA require cell pooling and could therefore mask differences in gene expression within heterogeneous cell populations. q2PISH allows for the analysis of both qualitative and quantitative (q2) gene expression on cultured cells for quality control measures with single cell resolution. q2PISH was optimized for the subsequent use of two alkaline phosphatase substrates in combination with a cell nucleus count to allow for accurate quantification of gene expression per cell and simultaneously qualitative assessment of potential culture population drift or heterogeneity. As proof of principle the assay was applied to cell lines derived from different areas of the bovine intervertebral disc, showing significant difference in the expression of Col1a1, Col2a1, Acan and Sox9. Furthermore, the assay served to explore a potential impact on cultured cells when substituting a critical media component, fetal bovine serum (FBS), suggesting no significant difference in gene expression for the biomarkers analyzed. As a tool, q2PISH serves as an accurate quality control with single cell resolution for cultured cells.

3.
Acta Histochem ; 119(2): 150-160, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063600

RESUMO

Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.


Assuntos
Disco Intervertebral/citologia , RNA/metabolismo , Células-Tronco/fisiologia , Animais , Bovinos , Linhagem da Célula , Células Cultivadas , Expressão Gênica , Humanos , Hibridização In Situ , Camundongos , RNA/genética , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA