Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 28(8): 703-715, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30220052

RESUMO

Invasive species often cause enormous economic and ecological damage, and this is especially true for invasive plants in the Asteraceae family. Arbuscular mycorrhizal fungi (AMF) play an important role in the successful invasion by exotic plant species because of their ability to promote growth and influence interspecific competition. However, few studies have evaluated the effects of invasive Asteraceae species on AMF diversity and how feedback mechanisms during competition with native species subsequently affect the accumulation of nutrient resources. Two exotic Asteraceae, Ambrosia artemisiifolia and Bidens pilosa, were monitored during competition with a native grass species, Setaria viridis, which is being replaced by these exotic species in natural areas around the study site. From these species continuously maintained in a field plot for 5 years, we collected the rhizosphere soil and cloned and identified soil AMF. Furthermore, AM fungal spores were isolated from rhizosphere soil of the two invasive species and used as inoculum in greenhouse experiments, to compare growth and nutrient accumulation during competition. The results indicate that although the AMF diversity in the rhizosphere soil of A. artemisiifolia and B. pilosa differed, the three most abundant species (Septoglomus viscosum, Septoglomus constrictum, Glomus perpusillum) were identical. The addition of AMF inoculum changed the competition between the plants, increasing the competitive ability of the invasives and decreasing that of the native. The results show a similar AMF community composition between A. artemisiifolia and B. pilosa, increased AMF root colonization of the invasive species during competition, AMF-enhanced N accumulation, and AMF-facilitated competitive growth of the invasive species.


Assuntos
Ambrosia/crescimento & desenvolvimento , Bidens/crescimento & desenvolvimento , Glomeromycota/fisiologia , Micorrizas/fisiologia , Setaria (Planta)/crescimento & desenvolvimento , Microbiologia do Solo , Ambrosia/microbiologia , Bidens/microbiologia , China , Espécies Introduzidas
2.
Conserv Biol ; 27(5): 1107-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23678968

RESUMO

Externally feeding phytophagous insect larvae (i.e., caterpillars, here, larval Lepidoptera and sawflies, Hymenoptera: Symphyta) are important canopy herbivores and prey resources in temperate deciduous forests. However, composition of forest trees has changed dramatically in the eastern United States since 1900. In particular, browsing by high densities of white-tailed deer (Odocoileus virginianus) has resulted in forests dominated by browse-tolerant species, such as black cherry (Prunus serotina), and greatly reduced relative abundance of other tree species, notably pin cherry (Prunus pensylvanica) and birches (Betula spp.). To quantify effects of these changes on caterpillars, we sampled caterpillars from 960 branch tips of the 8 tree species that comprise 95% of trees in Allegheny hardwood forests: red maple (Acer rubrum), striped maple (Acer pensylvanicum), sugar maple (Acer saccharum), sweet birch (Betula lenta), yellow birch (Betula allegheniensis), American beech (Fagus grandifolia), black cherry, and pin cherry. We collected 547 caterpillar specimens that belonged to 66 Lepidoptera and 10 Hymenoptera species. Caterpillar density, species richness, and community composition differed significantly among tree species sampled. Pin cherry, nearly eliminated at high deer density, had the highest density and diversity of caterpillars. Pin cherry shared a common caterpillar community with black cherry, which was distinct from those of other tree hosts. As high deer density continues to replace diverse forests of cherries, maples, birches, and beech with monodominant stands of black cherry, up to 66% of caterpillar species may be eliminated. Hence, deer-induced changes in forest vegetation are likely to ricochet back up forest food webs and therefore negatively affect species that depend on caterpillars and moths for food and pollination.


Assuntos
Biodiversidade , Cervos/fisiologia , Herbivoria , Mariposas/fisiologia , Acer , Animais , Betula , Fagus , Cadeia Alimentar , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Prunus , Especificidade da Espécie
3.
Ecol Evol ; 8(1): 560-571, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321893

RESUMO

Overbrowsing by ungulates decimates plant populations and reduces diversity in a variety of ecosystems, but the mechanisms by which changes to plant community composition influence other trophic levels are poorly understood. In addition to removal of avian nesting habitat, browsing is hypothesized to reduce bird density and diversity through reduction of insect prey on browse-tolerant hosts left behind by deer. In this study, we excluded birds from branches of six tree species to quantify differences in songbird prey removal across trees that vary in deer browse preference. Early in the breeding season, birds preyed on caterpillars at levels proportional to their abundance on each host. Combining these data with tree species composition data from stands exposed to experimentally controlled deer densities over 30 years ago, we tested whether overbrowsing by white-tailed deer reduces prey biomass long after deer densities are reduced. Our analysis predicts total prey availability in the canopy of regenerating forests is fairly robust to historic exposure to high deer densities, though distribution of prey available from host species changes dramatically. This predicted compensatory effect was unexpected and is driven by high prey abundance on a single host tree species avoided by browsing deer, Prunus serotina. Thus, while we confirm that prey abundance on host trees can act as a reliable predictor for relative prey availability, this study shows that quantifying prey abundance across host trees is essential to understanding how changes in tree species composition interact with ungulate browse preference to determine prey availability for songbirds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA