Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Immunol ; 15(3): 231-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464131

RESUMO

Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquired Lys63 (K63)-linked polyubiquitination mediated by the apoptosis inhibitor cIAP2 that was enhanced by the bioactive lipid S1P. In response to IL-1, cIAP2 and the sphingosine kinase SphK1 (the enzyme that generates S1P) formed a complex with IRF1, which led to its activation. Thus, IL-1 triggered a hitherto unknown signaling cascade that controlled the induction of IRF1-dependent genes that encode molecules important for sterile inflammation.


Assuntos
Quimiocina CCL5/biossíntese , Quimiocina CXCL10/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interleucina-1/metabolismo , Transdução de Sinais/imunologia , Animais , Quimiocina CCL5/imunologia , Quimiocina CXCL10/imunologia , Quimiotaxia de Leucócito/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Imunoprecipitação , Inflamação/imunologia , Inflamação/metabolismo , Fator Regulador 1 de Interferon/imunologia , Interleucina-1/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lisina , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitinação
2.
J Neuroinflammation ; 19(1): 158, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35718775

RESUMO

BACKGROUND: Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown. METHODS: We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. RESULTS: cIAP2-/- mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. CONCLUSIONS: Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias
3.
Mol Genet Metab ; 133(2): 182-184, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020866

RESUMO

Carnitine palmitoyl transferase II (CPT II) catalyzes the release of activated long-chain fatty acids from acylcarnitines into mitochondria for subsequent fatty acid oxidation. Depending on residual enzyme activity, deficiency of this enzyme leads to a spectrum of symptoms from early onset hypoglycemia, hyperammonemia, cardiomyopathy and death to onset of recurrent rhabdomyolysis in adolescents and young adults. We present a case of successful orthotopic heart transplantation in a patient with severe infantile onset cardiomyopathy due to CPT II deficiency identified through newborn screening. Excellent cardiac function is preserved 12 years post-transplantation; however, the patient has developed intermittent episodes of hyperammonemia and rhabdomyolysis later in childhood and early adolescence readily resolved with intravenous glucose. Successful heart transplant in this patient demonstrates the feasibility of this management option in patients with even severe forms of long chain fatty acid oxidation disorders.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Transplante de Coração/métodos , Coração/fisiopatologia , Erros Inatos do Metabolismo/terapia , Adolescente , Adulto , Idade de Início , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Hiperamonemia/terapia , Hipoglicemia/genética , Hipoglicemia/patologia , Hipoglicemia/terapia , Recém-Nascido , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Triagem Neonatal , Rabdomiólise/genética , Rabdomiólise/patologia , Rabdomiólise/terapia , Adulto Jovem
4.
J Immunol ; 194(6): 2862-70, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681350

RESUMO

The secreted protein, YKL-40, has been proposed as a biomarker of a variety of human diseases characterized by ongoing inflammation, including chronic neurologic pathologies such as multiple sclerosis and Alzheimer's disease. However, inflammatory mediators and the molecular mechanism responsible for enhanced expression of YKL-40 remained elusive. Using several mouse models of inflammation, we now show that YKL-40 expression correlated with increased expression of both IL-1 and IL-6. Furthermore, IL-1 together with IL-6 or the IL-6 family cytokine, oncostatin M, synergistically upregulated YKL-40 expression in both primary human and mouse astrocytes in vitro. The robust cytokine-driven expression of YKL-40 in astrocytes required both STAT3 and NF-κB binding elements of the YKL-40 promoter. In addition, YKL-40 expression was enhanced by constitutively active STAT3 and inhibited by dominant-negative IκBα. Surprisingly, cytokine-driven expression of YKL-40 in astrocytes was independent of the p65 subunit of NF-κB and instead required subunits RelB and p50. Mechanistically, we show that IL-1-induced RelB/p50 complex formation was further promoted by oncostatin M and that these complexes directly bound to the YKL-40 promoter. Moreover, we found that expression of RelB was strongly upregulated during inflammation in vivo and by IL-1 in astrocytes in vitro. We propose that IL-1 and the IL-6 family of cytokines regulate YKL-40 expression during sterile inflammation via both STAT3 and RelB/p50 complexes. These results suggest that IL-1 may regulate the expression of specific anti-inflammatory genes in nonlymphoid tissues via the canonical activation of the RelB/p50 complexes.


Assuntos
Adipocinas/genética , Citocinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Lectinas/genética , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelB/metabolismo , Adipocinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3 , Citocinas/genética , Feminino , Glicoproteínas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/farmacologia , Interleucina-6/genética , Interleucina-6/farmacologia , Lectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Subunidade p50 de NF-kappa B/genética , Oncostatina M/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição RelB/genética
5.
Curr Cardiol Rep ; 19(2): 13, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28185170

RESUMO

PURPOSE OF REVIEW: Congenital heart disease is the most common birth defect and acquired heart disease is the leading cause of death in adults. Understanding the mechanisms that drive cardiomyocyte proliferation and differentiation has the potential to advance the understanding and potentially the treatment of different cardiac pathologies, ranging from myopathies and heart failure to myocardial infarction. This review focuses on studies aimed at elucidating signal transduction pathways and molecular mechanisms that promote proliferation, differentiation, and regeneration of differentiated heart muscle cells, cardiomyocytes. RECENT FINDINGS: There is now significant evidence that demonstrates cardiomyocytes continue to proliferate into adulthood. Potential regulators have been identified, including cell cycle regulators, extracellular ligands such as neuregulin, epigenetic targets, reactive oxygen species, and microRNA. The necessary steps should involve validating and applying the new knowledge about cardiomyocyte regeneration towards the development of therapeutic targets for patients. This will be facilitated by the application of standardized pre-clinical models to study cardiomyocyte regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Miócitos Cardíacos/citologia , Regeneração , Doenças Cardiovasculares/fisiopatologia , Ciclo Celular , Humanos , Transdução de Sinais
6.
FASEB J ; 29(12): 4853-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246404

RESUMO

The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNß production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-ß amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.


Assuntos
Quimiocina CCL5/antagonistas & inibidores , Interferon beta/metabolismo , Interleucina-1/antagonistas & inibidores , Lisofosfolipídeos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/biossíntese , Interferon beta/biossíntese , Ligantes , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Esfingosina/fisiologia
7.
J Heart Lung Transplant ; 43(5): 816-825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38232791

RESUMO

BACKGROUND: Presence of donor-specific antibodies (DSAs), particularly to class II antigens, remains a major challenge in pediatric heart transplantation. Donor-recipient human leukocyte antigen (HLA) matching is a potential strategy to mitigate poor outcomes associated with DSAs. We evaluated the hypothesis that antigen mismatching at the DQB1 locus is associated with worse rejection-free survival. METHODS: Data were collected from Scientific Registry of Transplant Recipients for all pediatric heart transplant recipients 2010-2021. Only transplants with complete HLA typing at the DQB1 locus for recipient and donor were included. Primary outcome was rejection-free graft survival through 5 years. RESULTS: Of 5,115 children, 4,135 had complete DQB1 typing and were included. Of those, 503 (12%) had 0 DQB1 donor-recipient mismatches, 2,203 (53%) had 1, and 1,429 (35%) had 2. Rejection-free survival through 5 years trended higher for children with 0 DQB1 mismatches (68%), compared to those with 1 (62%) or 2 (63%) mismatches (pairwise p = 0.08 for both). In multivariable analysis, 0 DQB1 mismatches remained significantly associated with improved rejection-free graft survival compared to 2 mismatches, while 1 DQB1 mismatch was not. Subgroup analysis showed the strongest effect in non-Hispanic Black children and those undergoing retransplant. CONCLUSIONS: Matching at the DQB1 locus is associated with improved rejection-free survival after pediatric heart transplant, particularly in Black children, and those undergoing retransplant. Assessing high-resolution donor typing at the time of allocation may further corroborate and refine this association. DQB1 matching may improve long-term outcomes in children stabilized either with optimal pharmacotherapy or supported with durable devices able to await ideal donors.


Assuntos
Rejeição de Enxerto , Sobrevivência de Enxerto , Cadeias beta de HLA-DQ , Transplante de Coração , Humanos , Masculino , Criança , Feminino , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Pré-Escolar , Cadeias beta de HLA-DQ/genética , Lactente , Teste de Histocompatibilidade/métodos , Adolescente , Estudos Retrospectivos , Doadores de Tecidos , Sistema de Registros , Transplantados
8.
PLoS One ; 19(1): e0295651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271331

RESUMO

BACKGROUND: We have developed a new clinical research approach for the quantification of cellular proliferation in human infants to address unanswered questions about tissue renewal and regeneration. The approach consists of oral 15N-thymidine administration to label cells in S-phase, followed by Multi-isotope Imaging Mass Spectrometry for detection of the incorporated label in cell nuclei. To establish the approach, we performed an observational study to examine uptake and elimination of 15N-thymidine. We compared at-home label administration with in-hospital administration in infants with tetralogy of Fallot, a form of congenital heart disease, and infants with heart failure. METHODS: We examined urine samples from 18 infants who received 15N-thymidine (50 mg/kg body weight) by mouth for five consecutive days. We used Isotope Ratio Mass Spectrometry to determine enrichment of 15N relative to 14N (%) in urine. RESULTS/FINDINGS: 15N-thymidine dose administration produced periodic rises of 15N enrichment in urine. Infants with tetralogy of Fallot had a 3.2-fold increase and infants with heart failure had a 4.3-fold increase in mean peak 15N enrichment over baseline. The mean 15N enrichment was not statistically different between the two patient populations (p = 0.103). The time to peak 15N enrichment in tetralogy of Fallot infants was 6.3 ± 1 hr and in infants with heart failure 7.5 ± 2 hr (mean ± SEM). The duration of significant 15N enrichment after a dose was 18.5 ± 1.7 hr in tetralogy of Fallot and in heart failure 18.2 ± 1.8 hr (mean ± SEM). The time to peak enrichment and duration of enrichment were also not statistically different (p = 0.617 and p = 0.887). CONCLUSIONS: The presented results support two conclusions of significance for future applications: (1) Demonstration that 15N-thymidine label administration at home is equivalent to in-hospital administration. (2) Two different types of heart disease show no differences in 15N-thymidine absorption and elimination. This enables the comparative analysis of cellular proliferation between different types of heart disease.


Assuntos
Insuficiência Cardíaca , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/tratamento farmacológico , Isótopos de Nitrogênio , Administração Oral , Boca , Insuficiência Cardíaca/tratamento farmacológico
9.
J Biol Chem ; 286(9): 7315-26, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21189253

RESUMO

Transcription factors of the nuclear factor 1 (NFI) family regulate normal brain development in vertebrates. However, multiple splice variants of four NFI isoforms exist, and their biological functions have yet to be elucidated. Here, we cloned and analyzed human NFI-X3, a novel splice variant of the nfix gene, which contains a unique transcriptional activation (TA) domain completely conserved in primates. In contrast to previously cloned NFI-X1, overexpression of NFI-X3 potently activates NFI reporters, including glial fibrillary acidic protein (GFAP) reporter, in astrocytes and glioma cells. The GAL4 fusion protein containing the TA domain of NFI-X3 strongly activates the GAL4 reporter, whereas the TA domain of NFI-X1 is ineffective. The expression of NFI-X3 is dramatically up-regulated during the differentiation of neural progenitors to astrocytes and precedes the expression of astrocyte markers, such as GFAP and SPARCL1 (Secreted Protein, Acidic and Rich in Cysteines-like 1). Overexpression of NFI-X3 dramatically up-regulates GFAP and SPARCL1 expression in glioma cells, whereas the knockdown of NFI-X3 diminishes the expression of both GFAP and SPARCL1 in astrocytes. Although activation of astrocyte-specific genes involves DNA demethylation and subsequent increase of histone acetylation, NFI-X3 activates GFAP expression, in part, by inducing alterations in the nucleosome architecture that lead to the increased recruitment of RNA polymerase II.


Assuntos
Processamento Alternativo/fisiologia , Astrócitos/citologia , Astrócitos/fisiologia , Fatores de Transcrição NFI/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sequência Conservada , Células-Tronco Embrionárias/citologia , Proteínas da Matriz Extracelular/genética , Fibroblastos/citologia , Marcadores Genéticos , Proteína Glial Fibrilar Ácida/genética , Glioblastoma , Células HEK293 , Humanos , Mamíferos , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição NFI/química , Fatores de Transcrição NFI/metabolismo , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ativação Transcricional/fisiologia
10.
Cancer Metastasis Rev ; 30(3-4): 577-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002715

RESUMO

Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/metabolismo , Animais , Transporte Biológico , Líquido Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
JIMD Rep ; 63(2): 114-122, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281665

RESUMO

Cardiomyopathy is the most common presenting feature of Barth syndrome, often presenting in infancy with severe heart failure and cardiac dysfunction. Historically, affected infants commonly died early after presentation, sometimes before a diagnosis of Barth syndrome was made. With increases in awareness of Barth syndrome and in the care of infants with severe heart failure, survival of children with Barth syndrome and severe heart failure has improved. We describe our experience caring for five unrelated boys with Barth syndrome who presented with severe cardiomyopathy and heart failure prior to age 2 who have had marked improvement with long-term response to medical heart failure therapy.

12.
Nat Protoc ; 16(4): 1995-2022, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627842

RESUMO

Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.


Assuntos
Divisão Celular , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Miócitos Cardíacos/citologia , Timidina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Feminino , Feto/citologia , Humanos , Imageamento Tridimensional , Lactente , Leucócitos/citologia , Miocárdio/citologia , Isótopos de Nitrogênio/urina , Ploidias , Gravidez , Sarcômeros/metabolismo , Tetralogia de Fallot/patologia
13.
Int J Cardiol ; 339: 36-42, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265312

RESUMO

BACKGROUND: Patients with Tetralogy of Fallot with pulmonary stenosis (ToF/PS), the most common form of cyanotic congenital heart disease (CHD), develop adverse right ventricular (RV) remodeling, leading to late heart failure and arrhythmia. We recently demonstrated that overactive ß-adrenergic receptor signaling inhibits cardiomyocyte division in ToF/PS infants, providing a conceptual basis for the hypothesis that treatment with the ß-adrenergic receptor blocker, propranolol, early in life would increase cardiomyocyte division. No data are available in ToF/PS infants on the efficacy of propranolol as a possible novel therapeutic option to increase cardiomyocyte division and potentially reduce adverse RV remodeling. METHODS: Using a randomized, double-blind, placebo-controlled trial, we will evaluate the effect of propranolol administration on reactivating cardiomyocyte proliferation to prevent adverse RV remodeling in 40 infants with ToF/PS. Propranolol administration (1 mg/kg po QID) will begin at 1 month of age and last until surgical repair. The primary endpoint is cardiomyocyte division, quantified after 15N-thymidine administration with Multi-isotope Imaging Mass Spectrometry (MIMS) analysis of resected myocardial specimens. The secondary endpoints are changes in RV myocardial and cardiomyocyte hypertrophy. CONCLUSION: This trial will be the first study in humans to assess whether cardiomyocyte proliferation can be pharmacologically increased. If successful, the results could introduce a paradigm shift in the management of patients with ToF/PS from a purely surgical approach, to synergistic medical and surgical management. It will provide the basis for future multi-center randomized controlled trials of propranolol administration in infants with ToF/PS and other types of CHD with RV hypertension. CLINICAL TRIAL REGISTRATION: The trial protocol was registered at clinicaltrials.gov (NCT04713657).


Assuntos
Estenose da Valva Pulmonar , Tetralogia de Fallot , Humanos , Lactente , Miócitos Cardíacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Adrenérgicos beta 2 , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Remodelação Ventricular
14.
J Neurol Sci ; 285(1-2): 178-84, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19625028

RESUMO

Radiation therapy is used widely to treat primary and metastatic brain tumors, but also can lead to delayed neurological complications. Since maintenance of myelin integrity is important for cognitive function, the present study used a rat model that demonstrates spatial learning and memory impairment 12 months following fractionated whole-brain irradiation (WBI) at middle age to investigate WBI-induced myelin changes. In this model, 12-month Fischer 344 x Brown Norway rats received 9 fractions of 5 Gy delivered over 4.5 weeks (WBI rats); Sham-IR rats received anesthesia only. Twelve months later, the brains were collected and measures of white matter integrity were quantified. Qualitative observation did not reveal white matter necrosis one year post-WBI. In addition, the size of major forebrain commissures, the number of oligodendrocytes, the size and number of myelinated axons, and the thickness of myelin sheaths did not differ between the two groups. In summary, both the gross morphology and the structural integrity of myelin were preserved one year following fractionated WBI in a rodent model of radiation-induced cognitive impairment. Imaging studies with advanced techniques including diffusion tensor imaging may be required to elucidate the neurobiological changes associated with the cognitive impairment in this model.


Assuntos
Encéfalo/patologia , Encéfalo/efeitos da radiação , Transtornos Cognitivos/patologia , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Animais , Encéfalo/ultraestrutura , Contagem de Células , Tamanho Celular , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Bainha de Mielina/patologia , Bainha de Mielina/efeitos da radiação , Bainha de Mielina/ultraestrutura , Necrose/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Oligodendroglia/patologia , Oligodendroglia/efeitos da radiação , Oligodendroglia/ultraestrutura , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Percepção Espacial/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA