Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 60(7): 613-623, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378235

RESUMO

The facultative plant endophyte Azospirillum brasilense Sp245 synthesizes two high-molecular-weight lipopolysaccharides, LPSI and LPSII, which comprise identical d-rhamnan O-polysaccharides and, presumably different core oligosaccharides. Previously, using random insertion mutagenesis, we constructed the LpsII- mutant KM139 of strain Sp245 that possessed an Omegon-Km insertion in plasmid AZOBR_p6. Here, we found that in KM139, Omegon-Km disrupted the coding sequence AZOBR_p60126 for a putative glycosyltransferase related to mannosyltransferases and rhamnosyltransferases. To verify its function, we cloned the AZOBR_p60126 gene of strain Sp245 in the expression vector plasmid pRK415 and transferred the construct pRK415-p60126 into KM139. In the complemented mutant KM139 (pRK415-p60126), the wild-type LPSI+ LPSII+ profile was recovered. We also compared the swimming and swarming motilities of strains Sp245, Sp245 (pRK415), KM139, KM139 (pRK415), and KM139 (pRK415-p60126). All these strains had the same flagellar-dependent swimming speeds, but on soft media, the LpsI+ LpsII- strains KM139 and KM139 (pRK415) swarmed significantly faster than the other LpsI+ LpsII+ strains. Such interstrain differences in swarming motility were more pronounced on 0.4% than on 0.5% soft agar plates. These data show that the AZOBR_p60126-encoded putative glycosyltransferase significantly affects the lipopolysaccharide profile and, as a consequence, the social motility of azospirilla.


Assuntos
Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Glicosiltransferases/genética , Lipopolissacarídeos/biossíntese , Locomoção/genética , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Flagelos/fisiologia , Plasmídeos/genética
2.
Can J Microbiol ; 65(2): 144-154, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30336067

RESUMO

The bacterium Azospirillum brasilense can swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella, respectively. They also form biofilms on various interfaces. Experimental data on flagellar assembly and social behaviours in these bacteria are scarce. Here, for the first time, the chromosomal coding sequence mmsB1 for a homologue of 3-hydroxyisobutyrate dehydrogenase (protein accession Nos. ADT80774 and E7CWE2) was shown to play a role in the assembly of motile Fla and in biofilm biomass accumulation. In the previously obtained mutant SK039 of A. brasilense Sp245, an Omegon-Km insertion in mmsB1 was concurrent with changes in cell-surface properties and with suppression of Fla assembly (partial) and Fla-dependent motility (complete). Here, the immotile leaky Fla- mutant SK039 was complemented with the expression vector pRK415-borne mmsB1 gene of Sp245. In the complemented mutant, the elevated relative cell hydrophobicity and changed relative membrane fluidity of SK039 returned to the wild-type levels; also, biofilm biomass accumulation increased and even reached Sp245's levels under nutritionally rich conditions. In strain SK039 (pRK415-mmsB1), the percentage of cells with Fla became significantly higher than that in mutant SK039, and the Fla-driven swimming velocity was equal to that in strain Sp245.


Assuntos
Oxirredutases do Álcool/fisiologia , Azospirillum brasilense/fisiologia , Biofilmes , Flagelos/fisiologia , Interações Hidrofóbicas e Hidrofílicas
3.
Can J Microbiol ; 64(2): 107-118, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29141156

RESUMO

Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla- Laf- fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.


Assuntos
3-Oxoacil-(Proteína Carreadora de Acil) Redutase/genética , Azospirillum brasilense/enzimologia , Azospirillum brasilense/genética , Flagelos/genética , Plasmídeos/genética , Dobramento de Proteína
4.
Folia Microbiol (Praha) ; 65(6): 963-972, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32607666

RESUMO

The bacterium Azospirillum brasilense can swim and swarm owing to the work of polar and lateral flagella. Its major surface glycopolymers consist of lipopolysaccharides (LPS) and Calcofluor-binding polysaccharides (Cal+ phenotype). Motility and surface glycopolymers are important for the interactions of plant-associated bacteria with plants. The facultative plant endophyte A. brasilense Sp245 produces two antigenically different LPS, LpsI, and LpsII, containing identical O-polysaccharides. Previously, using vector pJFF350 for random Omegon-Km mutagenesis, we constructed a mutant of Sp245 named KM018 that still possessed flagella, although paralyzed. The mutant was no longer able to produce Calcofluor-binding polysaccharides and LpsII. Because of the limited experimental data on the genetic aspects of surface glycopolymer production and flagellar motility in azospirilla, the aim of this study was to identify and examine in more detail the coding sequence of strain Sp245, inactivated in the mutant. We found that pJFF350 was integrated into a coding sequence for a putative integral membrane protein of unknown function (AZOBR_p60025) located in the sixth plasmid of Sp245. To clarify the role of the putative protein, we cloned AZOBR_p60025 in the expression vector pRK415 and used it for the genetic complementation of mutant KM018. The SDS-PAGE, immunodiffusion, and linear immunoelectrophoresis analyses showed that in strain KM018 (pRK415-p60025), the wild-type LpsI+ LpsII+ profile was restored. The complemented mutant had a Cal+ phenotype and it was capable of swimming and swarming motility. Thus, the AZOBR_p60025-encoded protein significantly affects the composition of the major cell-surface glycopolymers and the single-cell and social motility of azospirilla.


Assuntos
Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/genética , Biologia Computacional , Flagelos , Mutagênese , Mutação , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA