RESUMO
Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
Assuntos
Cílios/metabolismo , Cílios/fisiologia , Proteínas/metabolismo , Animais , Dineínas do Axonema , Axonema/genética , Axonema/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Pré-Escolar , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Feminino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutação/genética , Linhagem , Fenótipo , Proteínas/genética , Transcrição Gênica/genéticaRESUMO
Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.
Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos KnockoutRESUMO
Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1-/- mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia, and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1-/- multiciliated ependymal cells and human PCM1-/- retinal pigmented epithelial 1 (RPE1) cells showed reduced ciliogenesis. PCM1-/- RPE1 cells displayed reduced docking of the mother centriole to the ciliary vesicle and removal of CP110 and CEP97 from the distal mother centriole, indicating compromised early ciliogenesis. Similarly, Pcm1-/- ependymal cells exhibited reduced removal of CP110 from basal bodies in vivo. We propose that PCM1 and centriolar satellites facilitate efficient trafficking of proteins to and from centrioles, including the departure of CP110 and CEP97 to initiate ciliogenesis, and that the threshold to trigger ciliogenesis differs between cell types.
Assuntos
Centríolos , Cílios , Animais , Feminino , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismoRESUMO
The nature-nurture argument surrounding the mechanisms of disease causation cannot be resolved, as the roles of genes and environment are inextricably entwined. Environmental fluctuation is clearly a major modifier of phenotype, as well as a promoter of evolutionary change. Both types of variability can be mediated by the stress response pathway, with the Hsp90 chaperone family as key components. Hsp90 has been hailed as a capacitor for evolutionary change, because partial inhibition of its functions can uncover cryptic mutations, leading to unexpected phenotypes that, although generally deleterious, will under rare new environmental conditions provide improved survival to the carrier of that variant. There is, therefore, a strong environmentally elicited link between the capacity to reveal hidden variation as human disease phenotype and as novel morphological forms for evolutionary selection.
Assuntos
Doença/genética , Evolução Molecular , Proteínas de Choque Térmico HSP90/fisiologia , Seleção Genética , Animais , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP90/genética , Humanos , Padrões de Herança/fisiologia , Modelos Biológicos , Fenótipo , Plantas/genética , Vertebrados/genéticaRESUMO
Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3') control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.
Assuntos
Proteínas do Olho/genética , Duplicação Gênica , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Biologia Computacional , Primers do DNA/genética , Elementos Facilitadores Genéticos , Evolução Molecular , Anormalidades do Olho/embriologia , Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes Reporter , Teste de Complementação Genética , Ligação Genética , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fator de Transcrição PAX6 , Fenótipo , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologiaRESUMO
The cell and cilia cycles are inextricably linked through the dual functions of the centrioles at both the basal body of cilia and at mitotic centrosomes. How cilia assembly and disassembly, either through slow resorption or rapid deciliation, are coordinated with cell cycle progression remains unclear in many cell types and developmental paradigms. Moreover, little is known about how additional cilia parameters including changes in ciliary length or frequency of distal tip shedding change with cell cycle stage. In order to explore these questions, we have developed the Arl13bCerulean-Fucci2a tricistronic cilia and cell cycle biosensor (Ford et al., Dev Cell 47:509-523.e7, 2018). This reporter allowed us to document the heterogeneity in ciliary behaviors during the cell cycle at a population level. Without the need for external stimuli, it revealed that in several cell types and in the developing embryo cilia persist beyond the G1/S checkpoint. Here, we describe the generation of stable cell lines expressing Arl13bCerulean-Fucci2a and open-source software to aid morphometric profiling of the primary cilium with cell cycle phases, including changes in cilium length. This resource will allow the investigation of multiple morphometric questions relating to cilia and cell cycle biology.
Assuntos
Técnicas Biossensoriais/métodos , Cílios/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Células 3T3 , Animais , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Geminina/química , Geminina/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteína Vermelha FluorescenteRESUMO
Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus, and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.
Assuntos
Cílios/metabolismo , Citoplasma/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Animais , Núcleo Celular/metabolismo , Masculino , Camundongos , Fatores de Processamento de Serina-Arginina/metabolismoRESUMO
Compromised heat shock protein 90 (Hsp90) function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.
Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Fenótipo , Vertebrados/embriologia , Vertebrados/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Benzoquinonas/farmacologia , Relação Dose-Resposta a Droga , Embrião não Mamífero , Anormalidades do Olho/genética , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Padrões de Herança , Lactamas Macrocíclicas/farmacologia , Masculino , Modelos Biológicos , Linhagem , Fatores de Tempo , Peixe-Zebra/embriologiaRESUMO
The cilia and cell cycles are inextricably linked. Centrioles in the basal body of cilia nucleate the ciliary axoneme and sequester pericentriolar matrix (PCM) at the centrosome to organize the mitotic spindle. Cilia themselves respond to growth signals, prompting cilia resorption and cell cycle re-entry. We describe a fluorescent cilia and cell cycle biosensor allowing live imaging of cell cycle progression and cilia assembly and disassembly kinetics in cells and inducible mice. We define assembly and disassembly in relation to cell cycle stage with single-cell resolution and explore the intercellular heterogeneity in cilia kinetics. In all cells and tissues analyzed, we observed cilia that persist through the G1/S transition and into S/G2/M-phase. We conclude that persistence of cilia after the G1/S transition is a general property. This resource will shed light at an individual cell level on the interplay between the cilia and cell cycles in development, regeneration, and disease.
Assuntos
Ciclo Celular/fisiologia , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Animais , Corpos Basais/metabolismo , Técnicas Biossensoriais/métodos , Proteínas de Ciclo Celular/metabolismo , Cinética , Camundongos , Microtúbulos/metabolismoRESUMO
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Assuntos
Axonema/metabolismo , Cílios/metabolismo , Proteínas de Ligação a DNA/genética , Dineínas/química , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a Tacrolimo/genética , Animais , Animais Recém-Nascidos , Axonema/ultraestrutura , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Cílios/ultraestrutura , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/metabolismo , Dineínas/genética , Dineínas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Cultura Primária de Células , Proteínas de Ligação a Tacrolimo/metabolismo , Traqueia/citologia , Traqueia/metabolismoRESUMO
Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.
Assuntos
Actinas/metabolismo , Transporte Biológico/fisiologia , Cílios/fisiologia , Flagelos/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Flagelos/metabolismo , Expressão Gênica/fisiologia , Humanos , Camundongos , Morfogênese/fisiologia , Mutação/fisiologia , FenótipoRESUMO
The lysine demethylase Kdm3a (Jhdm2a, Jmjd1a) is required for male fertility, sex determination, and metabolic homeostasis through its nuclear role in chromatin remodeling. Many histone-modifying enzymes have additional nonhistone substrates, as well as nonenzymatic functions, contributing to the full spectrum of events underlying their biological roles. We present two Kdm3a mouse models that exhibit cytoplasmic defects that may account in part for the globozoospermia phenotype reported previously. Electron microscopy revealed abnormal acrosome and manchette and the absence of implantation fossa at the caudal end of the nucleus in mice without Kdm3a demethylase activity, which affected cytoplasmic structures required to elongate the sperm head. We describe an enzymatically active new Kdm3a isoform and show that subcellular distribution, protein levels, and lysine demethylation activity of Kdm3a depended on Hsp90. We show that Kdm3a localizes to cytoplasmic structures of maturing spermatids affected in Kdm3a mutant mice, which in turn display altered fractionation of ß-actin and γ-tubulin. Kdm3a is therefore a multifunctional Hsp90 client protein that participates directly in the regulation of cytoskeletal components.
Assuntos
Azoospermia/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Isoformas de Proteínas/genética , Acrossomo/patologia , Actinas/genética , Animais , Azoospermia/genética , Linhagem Celular , Clonagem Molecular , Citoesqueleto , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Epitélio Pigmentado da Retina/citologia , Cabeça do Espermatozoide/patologia , Espermatogênese , Tubulina (Proteína)/genéticaRESUMO
Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.
Assuntos
Nanismo/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Complexo de Reconhecimento de Origem/genética , Adolescente , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Microtia Congênita , Consanguinidade , DNA/genética , Orelha/anormalidades , Feminino , Estudo de Associação Genômica Ampla , Transtornos do Crescimento/genética , Humanos , Lactente , Masculino , Micrognatismo/genética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/deficiência , Patela/anormalidades , Linhagem , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Fase S/genética , Arábia Saudita , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genéticaRESUMO
Single gene disorders with Mendelian inheritance patterns have contributed greatly to the identification of genes and pathways implicated in genetic disease. In these cases, molecular analysis predicts disease status relatively directly. However, there are many abnormalities which show familial recurrence and have a clear genetic component, but do not show regular Mendelian segregation patterns. Defining the causative gene for non-Mendelian diseases is more difficult, and even when the underlying gene is known, there is uncertainty for prenatal prediction. However, detailed examination of the different mechanisms that underlie non-Mendelian segregation provides insight into the types of interaction that regulate more complex disease genetics.