RESUMO
Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a role for ubiquitination in this process. We find that the E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 in retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas/metabolismo , Actinas/metabolismo , Proteínas de Ligação a DNA/genética , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , Interferência de RNA , Enzimas de Conjugação de Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal ß-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Assuntos
Candida albicans , Candidíase , Movimento Celular , Imunidade Inata , Macrófagos , Proteínas Proto-Oncogênicas c-cbl , Quinase Syk , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Podossomos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Transdução de Sinais , Quinase Syk/metabolismoRESUMO
Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.
Assuntos
Neoplasias do Colo/fisiopatologia , Cinurenina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triptofano/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Antineoplásicos/farmacologia , Arilformamidase/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Cinurenina/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Antígenos de Histocompatibilidade Menor/genética , Oximas/farmacologia , Proto-Oncogene Mas , Sulfonamidas/farmacologiaRESUMO
Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.
Assuntos
Análise de Dados , Idioma , Sítios de Ligação , Sequência de Aminoácidos , Bases de Dados FactuaisRESUMO
The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.
Assuntos
Aldeído Liases , Carbono , Acetilcoenzima A , Carbono/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Glucose/metabolismo , Engenharia MetabólicaRESUMO
MYC enhances protein synthesis by regulating genes involved in ribosome biogenesis and protein translation. Here, we show that MYC-induced protein translation is mediated by the transcription factor aryl hydrocarbon receptor (AHR), which is induced by MYC in colonic cells. AHR promotes protein synthesis by activating the transcription of genes required for ribosome biogenesis and protein translation, including OGFOD1 and NOLC1. Using surface sensing of translation (SUnSET) to measure global protein translation, we found that silencing AHR or its targets diminishes protein synthesis. Therefore, targeting AHR or its downstream pathways could provide a novel approach to limit biomass production in MYC-driven tumors.
Assuntos
Nucléolo Celular/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Linhagem Celular , Nucléolo Celular/genética , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Ativação TranscricionalRESUMO
The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.
Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Nucleofosmina , Fatores de Transcrição , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Ribossômico/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismoRESUMO
Photosynthesis and the biosynthesis of many important metabolites occur in chloroplasts. In these semi-autonomous organelles, the chloroplast genome encodes approximately 100 proteins. The remaining chloroplast proteins, close to 3,000, are encoded by nuclear genes whose products are translated in the cytosol and imported into chloroplasts. However, there is still no consensus on the composition of the protein import machinery including its motor proteins and on how newly imported chloroplast proteins are refolded. In this study, we have examined the function of orf2971, the largest chloroplast gene of Chlamydomonas reinhardtii. The depletion of Orf2971 causes the accumulation of protein precursors, partial proteolysis and aggregation of proteins, increased expression of chaperones and proteases, and autophagy. Orf2971 interacts with the TIC (translocon at the inner chloroplast envelope) complex, catalyzes ATP (adenosine triphosphate) hydrolysis, and associates with chaperones and chaperonins. We propose that Orf2971 is intimately connected to the protein import machinery and plays an important role in chloroplast protein quality control.
Assuntos
Cloroplastos , Proteínas de Plantas , Núcleo Celular , Proteínas de Cloroplastos , Chaperonas Moleculares , Transporte ProteicoRESUMO
Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated ß-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.
Healthy and cancer cells harbor the same DNA sequence, but reactivation of the Human Telomerase Reverse Transcriptase (hTERT) gene is observed only in cancer cells. How does that happen was not known for over three decades of research? This study identifies a specific DNA structure that forms only in cancer cells and brings the necessary molecular machinery into the correct position to activate the hTERT gene. The detailed mechanism of hTERT activation provided in this study will be instrumental in designing cancer cell-specific hTERT inhibitors, especially since all the other ways of inhibiting telomerase failed in the clinic.
Assuntos
Neoplasias Colorretais , Telomerase , Humanos , Carcinogênese , Cromatina/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regiões Promotoras Genéticas , Telomerase/antagonistas & inibidores , Telomerase/genética , Transcrição GênicaRESUMO
Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.
Assuntos
Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina , Proteínas de Ligação a DNA , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Neoplasias/genética , Sequências Reguladoras de Ácido Nucleico , Telomerase/metabolismo , Fatores de Transcrição , Transcrição GênicaRESUMO
Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.
RESUMO
Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.
RESUMO
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated ß-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of ß-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of ß-catenin. This article has an associated First Person interview with the first authors of the paper.
Assuntos
Neoplasias do Colo , Poluentes Ambientais , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Cinurenina , Triptofano , Actinas/metabolismo , Neoplasias do Colo/genética , RNARESUMO
Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.
Assuntos
Aprendizado Profundo , Sítios de Ligação/genética , Redes Neurais de Computação , Ligação Proteica , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.
Assuntos
Fatores de Crescimento de Fibroblastos , Humanos , Masculino , Feminino , Fatores de Crescimento de Fibroblastos/genética , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/patologia , Idoso , Linhagem , Expansão das Repetições de Trinucleotídeos/genética , Sequências de Repetição em Tandem/genética , Degenerações EspinocerebelaresRESUMO
OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.
Assuntos
Doença de Charcot-Marie-Tooth , Serina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Serina-tRNA Ligase/genética , Mutação , Heterozigoto , Mutação de Sentido Incorreto/genéticaRESUMO
BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.
Assuntos
Paraplegia Espástica Hereditária , Peixe-Zebra , Animais , Humanos , Ubiquinona/genética , Paraplegia Espástica Hereditária/genética , Mutação/genética , Mutação de Sentido Incorreto , Proteínas Mitocondriais/genéticaRESUMO
BACKGROUND: Platelet dysfunction plays a critical role in the pathogenesis of inflammatory bowel disease (IBD). Despite clinical observations indicating abnormalities in platelet parameters among IBD patients, inconsistencies persist, and these parameters lack standardization for diagnosis or clinical assessment. METHODS: A comprehensive search was conducted in the PubMed, Embase, Web of Science, and Cochrane Library databases for relevant articles published up to December 16th, 2023. A random-effects model was employed to pool the weighted mean difference (WMD) and 95% confidence interval (95% CI) of platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit (PCT) between IBD patients and healthy controls, and subgroup analyses were performed. RESULTS: The meta-analysis included 79 articles with 8,350 IBD patients and 13,181 healthy individuals. The results revealed significantly increased PLT and PCT levels (WMD: 69.910, 95% CI: 62.177, 77.643 109/L; WMD: 0.046%, 95% CI: 0.031%, 0.061%), and decreased MPV levels (WMD: -0.912, 95% CI: -1.086, -0.739 fL) in IBD patients compared to healthy individuals. No significant difference was found in PDW between the IBD and control groups (WMD: -0.207%, 95% CI: -0.655%, 0.241%). Subgroup analysis by disease type and disease activity showed no change in the differences for PLT, PCT, and MPV in the ulcerative colitis and Crohn's disease groups, as well as the active and inactive groups. Notably, the active group exhibited significantly lower PDW levels than the control group (WMD: -1.138%, 95% CI: -1.535%, -0.741%). CONCLUSIONS: Compared with healthy individuals, IBD patients display significantly higher PLT and PCT and significantly lower MPV. Monitoring the clinical manifestations of platelet abnormalities serves as a valuable means to obtain diagnostic and prognostic information. Conversely, proactive measures should be taken to prevent the consequences of platelet abnormalities in individuals with IBD. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023493848.
Assuntos
Plaquetas , Doenças Inflamatórias Intestinais , Volume Plaquetário Médio , Humanos , Contagem de Plaquetas , Doenças Inflamatórias Intestinais/sangue , Transtornos Plaquetários/sangue , Transtornos Plaquetários/diagnósticoRESUMO
BACKGROUND: Neurobrucellosis (NB) is a rare and serious complication of brucellosis. Its clinical manifestations vary, with no obvious specificity. At present, there is no clear clinical diagnosis or treatment for reference. In this study, we retrospectively analyzed the clinical data for 21 patients with NB to provide reference data for its further study. METHODS: We analyzed the epidemiological and clinical manifestations, laboratory tests, imaging examinations, cerebrospinal fluid, and treatment plans of 21 patients diagnosed with NB in the Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China. RESULTS: The ages of the patients ranged from 15 to 60 years old (mean age 40.1 ± 13.33 years), the male: female ratio was 4.25:1. Thirteen patients had a history of animal (sheep, cattle) contact, three had no history of animal contact, and the contact status of four was unknown. Brucella can invade various systems of the body and show multi-system symptoms, the main general manifestations were fever (66.67%), fatigue (57.14%) and functional urination or defecation disturbance (42.86%). The main nervous system manifestations were limb weakness (52.38%) and hearing loss (47.62%).The main positive signs of the nervous system included positive pathological signs (71.43%), sensory abnormalities (52.38%), limb paralysis (42.86%). Nervous system lesions mainly included spinal cord damage (66.67%), cranial nerve involvement (61.90%), central demyelination (28.57%) and meningitis (28.57%). In patients with cranial nerve involvement, 69.23% of auditory nerve, 15.38% of optic nerve and 15.38% of oculomotor nerve were involved. The blood of eight patients was cultured for Brucella, and three (37.5%) cultures were positive and five (63.5%) negative. The cerebrospinal fluid (CSF) of eight patients was cultured for Brucella, and two (25.00%) cultures were positive and six (75.00%) negative. Nineteen of the patients underwent a serum agglutination test (SAT), 18 (94.74%) of whom were positive and one (5.26%) of whom were negative. A biochemical analysis of the CSF was performed in 21 patients, and the results were all abnormal. Nineteen patients underwent magnetic resonance imaging (MRI). Twenty-one patients were treated with doxycycline and/or rifampicin, combined with ceftriaxone, quinolone, aminoglycoside, or minocycline. After hospitalization, 15 patients improved (71.43%), two patients did not recover, and the status of four patients was unknown. CONCLUSIONS: The clinical manifestations, CSF parameters, and neurological imaging data for patients with NB show no significant specificity or correlations. When patients with unexplained neurological symptoms accompanied by fever, fatigue, and other systemic manifestations in a brucellosis epidemic area or with a history of contact with cattle, sheep, animals, or raw food are encountered in clinical practice, the possibility of NB should be considered. Treatment is based on the principles of an early, combined, and long course of treatment, and the general prognosis is good.
Assuntos
Antibacterianos , Brucelose , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/líquido cefalorraquidiano , Brucelose/diagnóstico , Brucelose/epidemiologia , Adulto , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Adolescente , Adulto Jovem , China/epidemiologia , Resultado do Tratamento , Brucella/isolamento & purificação , AnimaisRESUMO
N2 adsorption is a prerequisite for activation and transformation. Time-of-flight mass spectrometry experiments show that the Nb2C6H4+ cation, resulting from the gas-phase reaction of Nb2+ with C6H6, is more favorable for N2 adsorption than Nb+ and Nb2+ cations. Density functional theory calculations reveal the effect of the ortho-C6H4 ligand on N2 adsorption. In Nb2C6H4+, interactions between the Nb-4d and C-2p orbitals enable the Nb2+ cation to form coordination bonds with the ortho-C6H4 ligand. Although the ortho-C6H4 ligand in Nb2C6H4+ is not directly involved in the reaction, its presence increases the polarity of the cluster and brings the highest occupied molecular orbital (HOMO) closer to the lowest occupied molecular orbital (LUMO) of N2, thereby increasing the N2 adsorption energy, which effectively facilitates N2 adsorption and activation. This study provides fundamental insights into the mechanisms of N2 adsorption in "transition metal-organic ligand" systems.