Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Plant Cell ; 34(9): 3319-3338, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35640569

RESUMO

Phosphate (Pi) limitation represents a primary constraint on crop production. To better cope with Pi deficiency stress, plants have evolved multiple adaptive mechanisms for phosphorus acquisition and utilization, including the alteration of growth and the activation of Pi starvation signaling. However, how these strategies are coordinated remains largely unknown. Here, we found that the alternative splicing (AS) of REGULATOR OF LEAF INCLINATION 1 (RLI1) in rice (Oryza sativa) produces two protein isoforms: RLI1a, containing MYB DNA binding domain and RLI1b, containing both MYB and coiled-coil (CC) domains. The absence of a CC domain in RLI1a enables it to activate broader target genes than RLI1b. RLI1a, but not RLI1b, regulates both brassinolide (BL) biosynthesis and signaling by directly activating BL-biosynthesis and signaling genes. Both RLI1a and RLI1b modulate Pi starvation signaling. RLI1 and PHOSPHATE STARVATION RESPONSE 2 function redundantly to regulate Pi starvation signaling and growth in response to Pi deficiency. Furthermore, the AS of RLI1-related genes to produce two isoforms for growth and Pi signaling is widely present in both dicots and monocots. Together, these findings indicate that the AS of RLI1 is an important and functionally conserved strategy to orchestrate Pi starvation signaling and growth to help plants adapt to Pi-limitation stress.


Assuntos
Oryza , Fosfatos , Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas
2.
Plant Biotechnol J ; 22(4): 1033-1048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997501

RESUMO

Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.


Assuntos
Oryza , Xanthomonas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Resistência à Doença/genética , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753441

RESUMO

Phosphorus nutrition has been known to influence floral transition in plants for a long time, but the underlying mechanism is unclear. Arabidopsis PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long-day and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is resulted from impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find rice PHO1;2, the homology of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.

4.
Plant Cell ; 33(5): 1417-1429, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33647940

RESUMO

Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Núcleo Celular/metabolismo , Dano ao DNA , DNA Polimerase I/metabolismo , Flores/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Metilação , Mutação/genética , Oryza/anatomia & histologia , Oryza/citologia , Fenótipo , Proteínas de Plantas/genética , Ligação Proteica , Fase S
5.
Plant Biotechnol J ; 21(7): 1373-1382, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36920783

RESUMO

As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle.


Assuntos
Microalgas , Fósforo , Ecossistema , Água , Águas Residuárias
6.
New Phytol ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715479

RESUMO

Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.

7.
New Phytol ; 239(2): 673-686, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194447

RESUMO

Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.


Assuntos
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fósforo/metabolismo , Lactonas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
New Phytol ; 238(4): 1420-1430, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36843251

RESUMO

The basal levels of salicylic acid (SA) vary dramatically among plant species. In the shoot, for example, rice contains almost 100 times higher SA levels than Arabidopsis. Despite its high basal levels, neither the biosynthetic pathway nor the biological functions of SA are well understood in rice. Combining with metabolite analysis, physiological, and genetic approaches, we found that the synthesis of basal SA in rice shoot is dependent on OsAIM1, which encodes a beta-oxidation enzyme in the phenylalanine ammonia-lyase (PAL) pathway. Compromised SA accumulation in the Osaim1 mutant led to a lower shoot temperature than wild-type plants. However, this shoot temperature defect resulted from increased transpiration due to elevated steady-state stomatal aperture in the mutant. Furthermore, the high basal SA level is required for sustained expression of OsWRKY45 to modulate the steady-state stomatal aperture and shoot temperature in rice. Taken together, these results provide the direct genetic evidence for the critical role of the PAL pathway in the biosynthesis of high basal level SA in rice, which plays an important role in the regulation of steady-state stomatal aperture to promote fitness under stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Ácido Salicílico/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Arabidopsis/metabolismo
9.
Plant Cell Environ ; 46(12): 3680-3703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575022

RESUMO

Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.


Assuntos
Calmodulina , Plantas , Calmodulina/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Cálcio/metabolismo
10.
Mikrochim Acta ; 190(6): 216, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173548

RESUMO

Magnetic nanomaterials are widely used, but co-adsorption of impurities will lead to saturation. In this study, the aim was to prepare a magnetic nano-immunosorbent material based on orienting immobilization that can purify and separate 25-hydroxyvitamin D (25OHD) from serum and provides a new concept of sample pretreatment technology. Streptococcus protein G (SPG) was modified on the surface of the chitosan magnetic material, and the antibody was oriented immobilized using the ability of SPG to specifically bind to the Fc region of the monoclonal antibody. The antigen-binding domain was fully exposed and made up for the deficiency of the antibody random immobilization. Compared with the antibody in the random binding format, this oriented immobilization strategy can increase the effective activity of the antibody, and the amount of antibody consumed is saved to a quarter of the former. The new method is simple, rapid, and sensitive, without consuming a lot of organic reagents, and can enrich 25OHD after simple protein precipitation. Combining with liquid chromatography-tandem mass spectrometry (LC-MS/MS), the analysis can be completed in less than 30 min. For 25OHD2 and 25OHD3, the LOD was 0.021 and 0.017 ng mL-1, respectively, and the LOQ was 0.070 and 0.058 ng mL-1, respectively. The results indicated that the magnetic nanomaterials based on oriented immobilization can be applied as an effective, sensitive, and attractive adsorbent to the enrichment of serum 25OHD.


Assuntos
Calcifediol , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais , Fenômenos Magnéticos
11.
J Integr Plant Biol ; 65(8): 1874-1889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096648

RESUMO

Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.


Assuntos
Oryza , Fosfatos , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
12.
Plant Cell Environ ; 45(5): 1584-1602, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141931

RESUMO

Many TGA transcription factors participate in immune responses in the SA-mediated signaling pathway in Arabidopsis. This study identified a transcription factor OsTGAL1, which is induced upon infection by Xoo. Overexpression of OsTGAL1 increased the susceptibility of rice to Xoo. Plants overexpressing OsTGAL1 could affect the expression of many SA signaling-related genes. OsTGAL1 was able to interact with the promoter of OsSGT1, which encodes a key enzyme for SA metabolism. The transcript of OsSGT1 was induced by Xoo and this responsive expression was further increased in plants overexpressing OsTGAL1. OsSGT1 knockout lines had enhanced resistance to Xoo, and knocking out OsSGT1 in plants overexpressing OsTGAL1 blocked the susceptibility caused by OsTGAL1. Altered expression levels of several OsPRs in all the transgenic plants demonstrated that SA-mediated signaling had been affected. Furthermore, we identified an oxidoreductase of CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 reduced the regulation of OsTGAL1 on OsSGT1, and this may be due to its redox modulation. Thus, our results demonstrate that OsTGAL1 negatively regulates resistance to Xoo by its effects on SA metabolism via the activation of OsSGT1, which provides valuable targets for plant breeders in developing new cultivars that are resistant to Xoo.


Assuntos
Arabidopsis , Oryza , Xanthomonas , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Planta ; 255(1): 9, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34846564

RESUMO

MAIN CONCLUSION: After tobacco topping, changes in the auxin content could affect K+ uptake by inhibiting the activity of K+ uptake-related genes through the NtARF genes, thus causing changes in K+ content. Tobacco (Nicotiana tabacum) is a valuable industrial and commercial crop, and the leaf is its primary product. Topping (removing apical buds) is a common agronomic practice that significantly improves the yield of tobacco leaves. Potassium (K+) plays an important physiological role in tobacco growth and leaf traits, including combustibility, aroma, and safety in cigarette products, and its levels are significantly decreased after topping. Here, to present global spatial-temporal gene expression profiles and gene regulatory networks of the core elements of K+ uptake, leaves and roots from topped and untopped plants at short- and long-term time points after topping were sampled for transcriptome analysis. We found that the wounding response was initiated in leaves in the early stages after topping. Then, in the long term, processes related to metabolism and transcription regulation, as well as ion binding and transport, were altered. The expression profiles showed that core elements of K+ uptake and xylem loading were drastically suppressed in roots after topping. Finally, transient expression experiments confirmed that changes in the auxin content could affect K+ uptake by inhibiting the activity of K+ uptake-related genes through the tobacco auxin response factor (NtARF) genes, thus causing changes in the K+ content. These results suggest that some ARFs could be selected as targets to enhance the expressions of K+ uptake transporters, leading to increment of K+ contents and improvement of leaf quality in tobacco breeding.


Assuntos
Nicotiana , Produtos do Tabaco , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Folhas de Planta/genética , Potássio , Nicotiana/genética
14.
New Phytol ; 232(4): 1566-1571, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482553

RESUMO

Phosphorus (P) is an essential element for plant growth and development. Vacuoles play a fundamental role in the storage and remobilization of P in plants, while our understanding of the evolutionary mechanisms of creating and reusing P stores are limited. Besides, we also know very little about the coordination of intercellular P translocation, neither the inorganic phosphate (Pi) signaling nor the Pi transport patterns. Here we summarize recent advances in understanding the core elements involved in cellular and/or subcellular P homeostasis and signaling in unicellular green algae and multicellular land plants. We also propose further work that might help to uncover the high-resolution intracellular and intercellular landscape of Pi distribution and signaling in plants.


Assuntos
Clorófitas , Embriófitas , Transporte Biológico , Fosfatos/metabolismo , Vacúolos/metabolismo
15.
Plant Cell ; 30(4): 853-870, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610209

RESUMO

Leaf erectness is one of the key traits of plant architecture; in grains, plants with upright leaves can be planted close together, thus benefiting yield/unit area. Many factors, such as hormones, affect leaf inclination; however, how nutrition status, in particular phosphate (Pi) availability, affects leaf inclination remains largely unexplained. Here, we show that in rice (Oryza sativa), Pi deficiency stress inhibits lamina joint cell elongation, thus restricting lamina joint size and inducing leaf erectness in rice. The Pi starvation-induced proteins SPX1 (for Syg1/Pho81/XPR1) and SPX2 play a negative role in the regulation of leaf inclination. We further identified an SPX1-interacting protein, REGULATOR OF LEAF INCLINATION1 (RLI1), which positively regulates leaf inclination by affecting lamina joint cell elongation in rice. The rli1 mutants showed reduced leaf inclination and the RLI1 overexpressors showed increased leaf inclination. RLI1 directly activates the downstream genes BRASSINOSTEROID UPREGULATED1 (BU1) and BU1-LIKE 1 COMPLEX1 to control elongation of the lamina joint cells, therefore enhancing leaf inclination. We also found that Pi deficiency repressed the expression of RLI1 SPX1 protein interacts directly with RLI1, which could prevent RLI1 binding to the promoters of downstream genes. Therefore, SPX and RLI1 form a module to regulate leaf inclination in response to external Pi availability in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Oryza/anatomia & histologia , Fenótipo , Fosfatos/deficiência , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Arch Microbiol ; 204(1): 103, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967930

RESUMO

A novel extremely halophilic archaeon, designated WN019T, was isolated from the natural saline-alkali wetland soil of Binhai new district, Tianjin, China. Cells of WN019T were aerobic, motile, and pleomorphic rod-shaped, 0.5-0.8 µm in width and 2.0-2.5 µm in length, and the growth occurred optimally at 33-37 °C, pH 7.5-8.0, and in the presence of 15.0-20.0% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequence comparison showed that the isolate belonged to the genus Halorubrum and exhibited moderate sequence similarity of 97.8% to Halorubrum saccharovorum JCM 8865T. The major respiratory quinones of strain WN019T were MK-8 and MK-8 (H2), and the major polar lipids were glycolipid (GL), phospholipid (PL), phosphatidylglycerol-sulphate (PGS), phosphatidylglycerol (PG) and phosphatidylglycerol-phosphate-methyl ester (Me-PGP). The DNA G + C content of the strain was 67.4 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) value based on whole genome sequences of strain WN019T and Halorubrum saccharovorum JCM 8865T were 87.5% and 35.4%, respectively. Phenotypic, chemotaxonomic, phylogenetic, and genomic analyses suggested that strain WN019T represents a novel species of the genus Halorubrum, for which the name Halorubrum salipaludis sp. nov. is proposed. The type strain is WN019T (= KCTC 4269T = ACCC 19977T).


Assuntos
Halorubrum , China , Halorubrum/genética , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
17.
Plant Cell ; 29(3): 560-574, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28298519

RESUMO

Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in ß-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes.


Assuntos
Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/fisiologia , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
J Integr Plant Biol ; 62(7): 1017-1033, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31697021

RESUMO

Phosphate starvation leads to a strong reduction in shoot growth and yield in crops. The reduced shoot growth is caused by extensive gene expression reprogramming triggered by phosphate deficiency, which is not itself a direct consequence of low levels of shoot phosphorus. However, how phosphate starvation inhibits shoot growth in rice is still unclear. In this study, we determined the role of OsCYCP4s in the regulation of shoot growth in response to phosphate starvation in rice. We demonstrate that the expression levels of OsCYCP4s, except OsCYCP4;3, were induced by phosphate starvation. Overexpression of the phosphate starvation induced OsCYCP4s could compete with the other cyclins for the binding with cyclin-dependent kinases, therefore suppressing growth by reducing cell proliferation. The phosphate starvation induced growth inhibition in the loss-of-function mutants cycp4;1, cycp4;2, and cycp4;4 is partially compromised. Furthermore, the expression of some phosphate starvation inducible genes is negatively modulated by these cyclins, which indicates that these OsCYCP4s may also be involved in phosphate starvation signaling. We conclude that phosphate starvation induced OsCYCP4s might coordinate phosphate starvation signaling and cell cycle progression under phosphate starvation stress.


Assuntos
Ciclo Celular , Oryza/citologia , Oryza/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação com Perda de Função/genética , Oryza/genética , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Biossíntese de Proteínas , Transcrição Gênica
19.
Plant Physiol ; 177(4): 1691-1703, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925586

RESUMO

MicroRNAs (miRNAs) are 20- to 24-nucleotide small noncoding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-Leu zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice.


Assuntos
Cádmio/farmacocinética , MicroRNAs/genética , Oryza/efeitos dos fármacos , Oryza/genética , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
20.
Plant Cell ; 27(3): 711-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724641

RESUMO

Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2ß3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/ß3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2ß3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/ß3 negatively regulates PTs and phosphorus status regulates CK2α3/ß3.


Assuntos
Caseína Quinase II/metabolismo , Oryza/enzimologia , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacologia , Proteínas de Plantas/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Modelos Biológicos , Mutação/genética , Oryza/efeitos dos fármacos , Fenótipo , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA