RESUMO
The computational spectrometer has significant potential for portable in situ applications. Encoding and reconstruction are the most critical technical procedures. In encoding, the random mass production and selection method lacks quantitative designs which leads to low encoding efficiency. In reconstruction, traditional spectrum reconstruction algorithms such as matching tracking and gradient descent demonstrate disadvantages like limited accuracy and efficiency. In this paper, we propose a new lightweight convolutional neural network called the wide-spectrum encoding and reconstruction neural network (WER-Net), which includes optical filters, quantitative spectral transmittance encoding, and fast spectral reconstruction of the encoded spectral information. The spectral transmittance curve obtained by WER-net can be fabricated through the inverse design network. The spectrometer developed based on WER-net experimentally demonstrates that it can achieve a 2-nm high resolution. In addition, the spectral transmittance encoding curve trained by WER-Net has also achieved good performance in other spectral reconstruction algorithms.
Assuntos
Algoritmos , Redes Neurais de ComputaçãoRESUMO
Cancer-associated fibroblasts (CAFs) mediate an immunosuppressive effect, but the underlying mechanism remains incompletely defined. Here we show that increasing prostatic stromal Foxf2 suppresses the growth and progression of both syngeneic and autochthonous mouse prostate cancer models in an immunocompetent context. Mechanistically, Foxf2 moderately attenuates the CAF phenotype and transcriptionally downregulates Cxcl5, which diminish the immunosuppressive myeloid cells and enhance T cell cytotoxicity. Increasing prostatic stromal Foxf2 sensitizes prostate cancer to the immune checkpoint blockade therapies. Augmenting lung stromal Foxf2 also mediates an immunosuppressive milieu and inhibits lung colonization of prostate cancer. FOXF2 is expressed higher in the stroma of human transition zone (TZ) than peripheral zone (PZ) prostate. The stromal FOXF2 expression level in primary prostate cancers inversely correlates with the Gleason grade. Our study establishes Foxf2 as a stromal transcription factor modulating the tumor immune microenvironment and potentially explains why cancers are relatively rare and indolent in the TZ prostate.