Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(37)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38876085

RESUMO

This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.

2.
Small ; 18(10): e2105916, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35018707

RESUMO

2D crystals can serve as templates for the realization of new van der Waals (vdW) heterostructures via controlled assembly of low-dimensional functional components. Among available 2D crystals, black phosphorus (BP) is unique due to its puckered atomic surface topography, which may lead to strong epitaxial phenomena through guided vdW assembly. Here, it is demonstrated that a BP template can induce highly oriented assembly of C60 molecular crystals. Transmission electron microscopy and theoretical analysis of the C60 /BP vdW heterostructure clearly confirm that the BP template results in oriented C60 assembly with higher-order commensurism. Lateral and vertical devices with C60 /BP junctions are fabricated via a lithography-free clean process, which allows one to investigate the ideal electrical properties of pristine C60 /BP junctions. Effective tuning of the C60 /BP junction barrier from 0.2 to 0.5 eV and maximum on-current density higher than 104  mA cm-2 are achieved with graphite/C60 /BP vertical vdW transistors. Due to the formation of high-quality C60 film and the semitransparent graphite top-electrode, the vertical transistors show high photoresponsivities up to ≈100 A W-1 as well as a fast response time under visible light illumination.

3.
Nano Lett ; 21(8): 3503-3510, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856222

RESUMO

Molybdenum disulfide (MoS2) has been regarded as one of the most important n-type two-dimensional (2D) transition metal dichalcogenide semiconductors for nanoscale electron devices. Relatively high contact resistance (RC) remains as an issue in the 2D-devices yet to be resolved. Reliable technique is very compelling to practically produce low RC values in device electronics, although scientific approaches have been made to obtain a record-low RC. To resolve this practical issue, we here use thermal-evaporated ultrathin LiF between channel and source/drain metal to fabricate 2D-like MoS2 field effect transistors (FETs) with minimum RC. Under 4-bar FET method, RC less than ∼600 Ω·µm is achieved from the LiF/Au contact MoS2 FET. Our normal 2-bar FET with LiF thus shows the same mobility as that of 4-bar FET that should have no RC in principle. On the basis of these results, ultrathin LiF is also applied for transparent conducting oxide contact, successfully enabling transparent MoS2 FETs.

4.
Nano Lett ; 19(4): 2456-2463, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30855970

RESUMO

Since transition metal dichalcogenide (TMD) semiconductors are found as two-dimensional van der Waals materials with a discrete energy bandgap, many TMD based field effect transistors (FETs) are reported as prototype devices. However, overall reports indicate that threshold voltage ( Vth) of those FETs are located far away from 0 V whether the channel is p- or n-type. This definitely causes high switching voltage and unintended OFF-state leakage current. Here, a facile way to simultaneously modulate the Vth of both p- and n-channel FETs with TMDs is reported. The deposition of various organic small molecules on the channel results in charge transfer between the organic molecule and TMD channels. Especially, HAT-CN molecule is found to ideally work for both p- and n-channels, shifting their Vth toward 0 V concurrently. As a proof of concept, a complementary metal oxide semiconductor (CMOS) inverter with p-MoTe2 and n-MoS2 channels shows superior voltage gain and minimal power consumption after HAT-CN deposition, compared to its initial performance. When the same TMD FETs of the CMOS structure are integrated into an OLED pixel circuit for ambipolar switching, the circuit with HAT-CN film demonstrates complete ON/OFF switching of OLED pixel, which was not switched off without HAT-CN.

5.
Sci Technol Adv Mater ; 20(1): 389-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068986

RESUMO

Ga-doped ZnO (GZO)-graded layer, facilitating electron extraction from electron transport layer, was integrated on the surface of transparent indium tin oxide (ITO) cathode by using graded sputtering technique to improve the performance of planar n-i-p perovskite solar cells (PSCs). The thickness of graded GZO layer was controlled to optimize GZO-indium tin oxide (ITO) combined electrode for planar n-i-p PSCs. At optimized graded thickness of 15 nm, the GZO-ITO combined electrode showed an optical transmittance of 95%, a resistivity of 2.3 × 10-4 Ohm cm, a sheet resistance of 15.6 Ohm/square, and work function of 4.23 eV, which is well matched with the 4.0-eV lowest unoccupied molecular orbital of [6,6]-phenyl-C61-butyric acid methyl ester. Owing to enhanced extraction of electron by the graded GZO, the n-i-p PSC with GZO-ITO combined electrode showed higher power conversion efficiency (PCE) of 9.67% than the PCE (5.25%) of PSC with only ITO electrode without GZO-graded layer. In addition, the GZO integrated-ITO electrode acts as transparent electrode and electron extraction layer simultaneously due to graded mixing of the GZO at the surface region of ITO electrode.

6.
Nano Lett ; 18(3): 1937-1945, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400979

RESUMO

A van der Waals (vdW) Schottky junction between two-dimensional (2D) transition metal dichalcogenides (TMDs) is introduced here for both vertical and in-plane current devices: Schottky diodes and metal semiconductor field-effect transistors (MESFETs). The Schottky barrier between conducting NbS2 and semiconducting n-MoS2 appeared to be as large as ∼0.5 eV due to their work-function difference. While the Schottky diode shows an ideality factor of 1.8-4.0 with an on-to-off current ratio of 103-105, Schottky-effect MESFET displays little gate hysteresis and an ideal subthreshold swing of 60-80 mV/dec due to low-density traps at the vdW interface. All MESFETs operate with a low threshold gate voltage of -0.5 ∼ -1 V, exhibiting easy saturation. It was also found that the device mobility is significantly dependent on the condition of source/drain (S/D) contact for n-channel MoS2. The highest room temperature mobility in MESFET reaches to approximately more than 800 cm2/V s with graphene S/D contact. The NbS2/n-MoS2 MESFET with graphene was successfully integrated into an organic piezoelectric touch sensor circuit with green OLED indicator, exploiting its predictable small threshold voltage, while NbS2/n-MoS2 Schottky diodes with graphene were applied to extract doping concentrations in MoS2 channel.

7.
Angew Chem Int Ed Engl ; 58(12): 3754-3758, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548756

RESUMO

Black phosphorus (BP) has received much attention owing to its fascinating properties, such as a high carrier mobility and tunable band gap. However, these advantages have been overshadowed by the fast degradation of BP under ambient conditions. To overcome this obstacle, the exact degradation mechanisms need to be unveiled. Herein, we analyzed two sequential degradation processes and the layer-dependent degradation rates of BP in the dark by scanning Kelvin probe microscopy (SKPM) measurements and theoretical modeling. The layer-dependent degradation was successfully interpreted by considering the oxidation model based on the Marcus-Gerischer theory (MGT). In the dark, the electron transfer rate from BP to oxygen molecules depends on the number of layers as these systems have different carrier concentrations. This work not only provides a deeper understanding of the degradation mechanism itself but also suggest new strategies for the design of stable BP-based electronics.

8.
Molecules ; 23(2)2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29463008

RESUMO

The interfacial electronic structures of a bilayer of fullerene (C60) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V2O5) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V2O5 was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V2O5 than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C60/ZnPc on V2O5 and ITO.


Assuntos
Fulerenos/química , Indóis/química , Compostos Organometálicos/química , Compostos de Vanádio/química , Isoindóis , Espectroscopia Fotoeletrônica , Especificidade por Substrato , Compostos de Estanho/química , Compostos de Zinco
9.
Phys Chem Chem Phys ; 18(7): 5444-52, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26821701

RESUMO

Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed.

10.
Nano Lett ; 15(12): 7788-93, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26572058

RESUMO

Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry's phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications.

11.
ACS Nano ; 18(10): 7570-7579, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38377437

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.

12.
ACS Nano ; 17(4): 3666-3675, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795495

RESUMO

Two-dimensional (2D)-layered material tantalum disulfide (2H-TaS2) is known to be a van der Waals conductor at room temperature. Here, 2D-layered TaS2 has been partially oxidized by utraviolet-ozone (UV-O3) annealing to form a 12-nm-thin TaOX on conducting TaS2, so that the TaOX/2H-TaS2 structure might be self-assembled. Utilizing the TaOX/2H-TaS2 structure as a platform, each device of a ß-Ga2O3 channel MOSFET and a TaOX memristor has been successfully fabricated. An insulator structure of Pt/TaOX/2H-TaS2 shows good a dielectric constant (k ∼ 21) and strength (∼3 MV/cm) of achieved TaOX, which is enough to support a ß-Ga2O3 transistor channel. Based on the quality of TaOX and low trap density of the TaOX/ß-Ga2O3 interface, which is achieved via another UV-O3 annealing, excellent device properties such as little hysteresis (<∼0.04 V), band-like transport, and a steep subthreshold swing of ∼85 mV/dec are achieved. With a Cu electrode on top of the TaOX/2H-TaS2 structure, the TaOX acts as a memristor operating around ∼2 V for nonvolatile bipolar and unipolar mode memories. The functionalities of the TaOX/2H-TaS2 platform become more distinguished finally when the Cu/TaOX/2H-TaS2 memristor and ß-Ga2O3 MOSFET are integrated to form a resistive memory switching circuit. The circuit nicely demonstrates the multilevel memory functions.

13.
Asian Spine J ; 17(2): 373-381, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693430

RESUMO

STUDY DESIGN: Retrospective cohort study. PURPOSE: Postoperative evaluation of the cross-sectional area of paraspinal muscle and clinical findings in patients who had interlaminar route uniportal full endoscopic posterolateral transforaminal lumbar interbody fusion (EPTLIF) after 2 years. OVERVIEW OF LITERATURE: There are limited short-term follow-up studies on efficacy, safety, and physiological changes with a 2-year follow-up. There is no study on paraspinal muscle cross-sectional area change in patients who had undergone uniportal EPTLIF. METHODS: We evaluated patients who underwent EPTLIF with a minimum 24-month follow-up. Clinical parameters of the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI) were measured at the preoperative, 1-week postoperative mark, postoperative 3-month mark, and final follow-up. Preoperative and 1-year postoperative magnetic resonance imaging measurement of preoperative and postoperative Kjaer grade, right and left psoas muscle mass area, and right and left paraspinal muscle mass area was performed. RESULTS: EPTLIF with a minimum 24-month follow-up of 35 levels was included. The complication rate was 6%, and the mean Bridwell's fusion grade was 1.37 (1-2). There was statistically significant improvement at 1 week, 3 months, and 2 years in VAS (4.11±1.23, 4.94±1.30, and 5.46±1.29) and in ODI (40.34±10.06, 46.69±9.14, and 49.63±8.68), respectively (p <0.05). Successful operation rate with excellent and good MacNab's criteria at 2 years was 97%. There was an increment of statistically significant bilateral psoas muscle cross-sectional area, right side (70.03±149.1 mm²) and left side (67.59±113.2 mm²) (p <0.05). CONCLUSIONS: Uniportal EPTLIF achieved good fusion and improved clinical outcomes with favorable paraspinal musculature bulk at the 2-year follow-up.

14.
Asian Spine J ; 17(1): 118-129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35785910

RESUMO

STUDY DESIGN: Retrospective cohort study. PURPOSE: To evaluate the clinical and radiological effects of epidural fluid hematoma in the medium term after lumbar endoscopic decompression. OVERVIEW OF LITERATURE: There is limited literature comparing the effect of postoperative epidural fluid hematoma after uniportal endoscopic decompression. METHODS: Magnetic resonance imaging (MRI) and clinical evaluation were performed for patients with single-level uniportal endoscopic lumbar decompression with a minimum follow-up of 2 years. RESULTS: A total of 126 patients were recruited with a minimum follow-up of 26 months. The incidence of epidural fluid hematoma was 27%. Postoperative MRI revealed a significant improvement in the postoperative dura sac area at postoperative day 1 and at the upper endplate at 6 months in the hematoma cohort (39.69±15.72 and 26.89±16.58 mm2) as compared with the nonhematoma cohort (48.92±21.36 and 35.1±20.44 mm2), respectively (p <0.05); and at the lower endplate on postoperative 1 day in the hematoma cohort (51.18±24.69 mm2) compared to the nonhematoma cohort (63.91±27.92 mm2) (p <0.05). No significant difference was observed in the dura sac area at postoperative 1 year in both cohorts. The hematoma cohort had statistically significant higher postoperative 1-week Visual Analog Scale (VAS; 3.32±0.68) pain and Oswestry Disability Index (ODI; 32.65±5.56) scores than the nonhematoma cohort (2.99±0.50 and 30.02±4.84, respectively; p <0.05). No significant difference was found at the final follow-up VAS, ODI, and MRI dura sac area. CONCLUSIONS: Epidural fluid hematoma is a common early postoperative MRI finding in lumbar endoscopic unilateral laminotomy with bilateral decompression. Conservative management is the preferred treatment option for patients who do not have a neurological deficit. Symptoms last only a few days and are self-limiting. A common endpoint is a remodeled fluid hematoma and the subsequent expansion of the dura sac area.

15.
J Chem Phys ; 137(3): 034704, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830721

RESUMO

We studied the effect of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum (Alq(3)) with density functional theory, which has been adopted as an exciton blocking layer (EBL) in organic photovoltaic cells (OPVCs). The substitution of electron withdrawing nitrogen on the phenoxide moiety of Alq(3) lowers the highest molecular orbital (HOMO) level, thus photogenerated excitons can be effectively blocked in OPVC. Additional substitution of methyl on the pyridine moiety makes that Alq(3) has a smaller electron reorganization energy, which results in higher electron mobility with keeping HOMO level almost intact. Therefore, nitrogen and methyl simultaneous substitution shows high performance both in exciton blocking and electron mobility. This is the origins of the short circuit current enhancement in OPVC with 4-hydroxy-8-methyl-1,5-naphthyridine aluminum chelate (Alq(3) with the substitution of both nitrogen and methyl group) EBL.

16.
Small Methods ; 6(3): e2101073, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037415

RESUMO

To dope 2D semiconductor channels, charge-transfer doping has generally been done by thermal deposition of inorganic or organic thin-film layers on top of the 2D channel in bottom-gate field-effect transistors (FETs). The doping effects are reproducible in most cases. However, such thermal deposition will damage the surface of 2D channels due to the kinetic energy of depositing atoms, causing hysteresis or certain degradation. Here, a more desirable charge-transfer doping process is suggested. A damage-free charge-transfer doping is conducted for 2D MoTe2 (or MoS2 ) channels using a polydimethylsiloxane stamp. MoO3 or LiF is initially deposited on the stamp as a doping medium. Hysteresis-minimized transfer characteristics are achieved from stamp-doped FETs, while other devices with direct thermal deposition-doped channels show large hysteresis. The stamping method seems to induce a van der Waals-like damage-free interface between the channel and doping media. The stamp-induced doping is also well applied for a MoTe2 -based complementary inverter because MoO3 - and LiF-doping by separate stamps effectively modifies two ambipolar MoTe2 channels to p- and n-type, respectively.

17.
Adv Mater ; 34(12): e2107882, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040202

RESUMO

Halide perovskites (HPs) are fascinating materials whose optoelectronic properties are arguably excitonic. In the HP family, biexcitons are known to exist only in low dimensions where exciton-exciton binding is strongly enhanced by quantum and dielectric confinements. In this paper, however, it is shown that they indeed do exist in 3D bulk CH3 NH3 PbBr3 (MAPbBr3 ) single crystals if the pristine crystal quality is ensured for subtle binding of two excitons. The existence of biexcitons is clearly evidenced below 30 K with a binding energy of ≈3.9 ± 0.3 meV according to i) exciton-biexciton population dynamics, ii) giant resonant two-photon excitation of biexcitons, iii) inverted Boltzmann-type spectral feature, and iv) zero degree of circular polarization in the biexciton photoluminescence. Because of the polariton effect, the two-photon resonance occurs at the excited biexciton state from which longitudinal-transverse splitting is calculated to be 3.7 meV. The discovery of the 3D biexcitons underscores the very quality of HP crystals for generating various many-body excitonic phases in MAPbBr3 and its analogues toward the improved understanding of their fundamental properties and highly efficient optoelectronic applications.

18.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453844

RESUMO

Objective: There is limited literature on repetitive postoperative MRI and clinical evaluation after Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression. Methods: Clinical visual analog scale, Oswestry Disability Index, McNab's criteria evaluation and MRI evaluation of the axial cut spinal canal area of the upper end plate, mid disc and lower end plate were performed for patients who underwent single-level Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression. From the evaluation of the axial cut MRI, four types of patterns of remodeling were identified: type A: continuous expanded spinal canal, type B: restenosis with delayed expansion, type C: progressive expansion and type D: restenosis. Result: A total of 126 patients with single-level Uniportal Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression were recruited with a minimum follow-up of 26 months. Thirty-six type A, fifty type B, thirty type C and ten type D patterns of spinal canal remodeling were observed. All four types of patterns of remodeling had statistically significant improvement in VAS at final follow-up compared to the preoperative state with type A (5.59 ± 1.58), B (5.58 ± 1.71), C (5.58 ± 1.71) and D (5.27 ± 1.68), p < 0.05. ODI was significantly improved at final follow-up with type A (49.19 ± 10.51), B (50.00 ± 11.29), C (45.60 ± 10.58) and D (45.60 ± 10.58), p < 0.05. A significant MRI axial cut increment of the spinal canal area was found at the upper endplate at postoperative day one and one year with type A (39.16 ± 22.73; 28.00 ± 42.57) mm2, B (47.42 ± 18.77; 42.38 ± 19.29) mm2, C (51.45 ± 18.16; 49.49 ± 18.41) mm2 and D (49.10 ± 23.05; 38.18 ± 18.94) mm2, respectively, p < 0.05. Similar significant increment was found at the mid-disc at postoperative day one, 6 months and one year with type A (55.16 ± 27.51; 37.23 ± 25.88; 44.86 ± 25.73) mm2, B (72.83 ± 23.87; 49.79 ± 21.93; 62.94 ± 24.43) mm2, C (66.85 ± 34.48; 54.92 ± 30.70; 64.33 ± 31.82) mm2 and D (71.65 ± 16.87; 41.55 ± 12.92; 49.83 ± 13.31) mm2 and the lower endplate at postoperative day one and one year with type A (49.89 ± 34.50; 41.04 ± 28.56) mm2, B (63.63 ± 23.70; 54.72 ± 24.29) mm2, C (58.50 ± 24.27; 55.32 ± 22.49) mm2 and D (81.43 ± 16.81; 58.40 ± 18.05) mm2 at postoperative day one and one year, respectively, p < 0.05. Conclusions: After full endoscopic lumbar decompression, despite achieving sufficient decompression immediately postoperatively, varying severity of asymptomatic restenosis was found in postoperative six months MRI without clinical significance. Further remodeling with a varying degree of increment of the spinal canal area occurs at postoperative one year with overall good clinical outcomes.

19.
Nat Commun ; 13(1): 3467, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725850

RESUMO

The need for miniaturized and high-performance devices has attracted enormous attention to the development of quantum silicon nanowires. However, the preparation of abundant quantities of silicon nanowires with the effective quantum-confined dimension remains challenging. Here, we prepare highly dense and vertically aligned sub-5 nm silicon nanowires with length/diameter aspect ratios greater than 10,000 by developing a catalyst-free chemical vapor etching process. We observe an unusual lattice reduction of up to 20% within ultra-narrow silicon nanowires and good oxidation stability in air compared to conventional silicon. Moreover, the material exhibits a direct optical bandgap of 4.16 eV and quasi-particle bandgap of 4.75 eV with the large exciton binding energy of 0.59 eV, indicating the significant phonon and electronic confinement. The results may provide an opportunity to investigate the chemistry and physics of highly confined silicon quantum nanostructures and may explore their potential uses in nanoelectronics, optoelectronics, and energy systems.

20.
Adv Mater ; 33(23): e2100211, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938045

RESUMO

Understanding and controlling the energy level alignment at interfaces with metal halide perovskites (MHPs) is essential for realizing the full potential of these materials for use in optoelectronic devices. To date, however, the basic electronic properties of MHPs are still under debate. Particularly, reported Fermi level positions in the energy gap vary from indicating strong n- to strong p-type character for nominally identical materials, raising serious questions about intrinsic and extrinsic defects as dopants. ​In this work, photoemission experiments demonstrate that thin films of the prototypical methylammonium lead triiodide (MAPbI3 ) behave like an intrinsic semiconductor in the absence of oxygen. Oxygen is then shown to be able to reversibly diffuse into and out of the MAPbI3 bulk, requiring rather long saturation timescales of ≈1 h (in: ambient air) and over 10 h (out: ultrahigh vacuum), for few 100 nm thick films. Oxygen in the bulk leads to pronounced p-doping, positioning the Fermi level universally ≈0.55 eV above the valence band maximum. The key doping mechanism is suggested to be molecular oxygen substitution of iodine vacancies, supported by density functional theory calculations. This insight rationalizes previous and future electronic property studies of MHPs and calls for meticulous oxygen exposure protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA