Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nucleic Acids Res ; 51(11): 5325-5340, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37216594

RESUMO

G4C2 and G2C4 repeat expansions in chromosome 9 open reading frame 72 (C9orf72) are the most common cause of genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), or c9ALS/FTD. The gene is bidirectionally transcribed, producing G4C2 repeats [r(G4C2)exp] and G2C4 repeats [r(G2C4)exp]. The c9ALS/FTD repeat expansions are highly structured, and structural studies showed that r(G4C2)exp predominantly folds into a hairpin with a periodic array of 1 × 1 G/G internal loops and a G-quadruplex. A small molecule probe revealed that r(G4C2)exp also adopts a hairpin structure with 2 × 2 GG/GG internal loops. We studied the conformational dynamics adopted by 2 × 2 GG/GG loops using temperature replica exchange molecular dynamics (T-REMD) and further characterized the structure and underlying dynamics using traditional 2D NMR techniques. These studies showed that the loop's closing base pairs influence both structure and dynamics, particularly the configuration adopted around the glycosidic bond. Interestingly, r(G2C4) repeats, which fold into an array of 2 × 2 CC/CC internal loops, are not as dynamic. Collectively, these studies emphasize the unique sensitivity of r(G4C2)exp to small changes in stacking interactions, which is not observed in r(G2C4)exp, providing important considerations for further principles in structure-based drug design.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , RNA
2.
Biophys J ; 122(1): 180-196, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36348626

RESUMO

Expansion of RNA CUG repeats causes myotonic dystrophy type 1 (DM1). Once transcribed, the expanded CUG repeats strongly attract muscleblind-like 1 (MBNL1) proteins and disturb their functions in cells. Because of its unique structural form, expanded RNA CUG repeats are prospective drug targets, where small molecules can be utilized to target RNA CUG repeats to inhibit MBNL1 binding and ameliorate DM1-associated defects. In this contribution, we developed two physics-based dynamic docking approaches (DynaD and DynaD/Auto) and applied them to nine small molecules known to specifically target RNA CUG repeats. While DynaD uses a distance-based reaction coordinate to study the binding phenomenon, DynaD/Auto combines results of umbrella sampling calculations performed on 1 × 1 UU internal loops and AutoDock calculations to efficiently sample the energy landscape of binding. Predictions are compared with experimental data, displaying a positive correlation with correlation coefficient (R) values of 0.70 and 0.81 for DynaD and DynaD/Auto, respectively. Furthermore, we found that the best correlation was achieved with MM/3D-RISM calculations, highlighting the importance of solvation in binding calculations. Moreover, we detected that DynaD/Auto performed better than DynaD because of the use of prior knowledge about the binding site arising from umbrella sampling calculations. Finally, we developed dendrograms to present how bound states are connected to each other in a binding process. Results are exciting, as DynaD and DynaD/Auto will allow researchers to utilize two novel physics-based and computer-aided drug-design methodologies to perform in silico calculations on drug-like molecules aiming to target complex RNA loops.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , RNA/genética , RNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(52): 33197-33203, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318191

RESUMO

RNAs have important functions that are dictated by their structure. Indeed, small molecules that interact with RNA structures can perturb function, serving as chemical probes and lead medicines. Here we describe the development of a fragment-based approach to discover and optimize bioactive small molecules targeting RNA. We extended the target validation method chemical cross-linking and isolation by pull-down (Chem-CLIP) to identify and map the binding sites of low molecular weight fragments that engage RNA or Chem-CLIP fragment mapping (Chem-CLIP-Frag-Map). Using Chem-CLIP-Frag-Map, we identified several fragments that bind the precursor to oncogenic microRNA-21 (pre-miR-21). Assembly of these fragments provided a specific bioactive compound with improved potency that inhibits pre-miR-21 processing, reducing mature miR-21 levels. The compound exerted selective effects on the transcriptome and selectively mitigated a miR-21-associated invasive phenotype in triple-negative breast cancer cells. The Chem-CLIP-Frag-Map approach should prove general to expedite the identification and optimization of small molecules that bind RNA targets.


Assuntos
Antineoplásicos/química , Descoberta de Drogas/métodos , MicroRNAs/química , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Motivos de Nucleotídeos , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(5): 2406-2411, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964809

RESUMO

As the area of small molecules interacting with RNA advances, general routes to provide bioactive compounds are needed as ligands can bind RNA avidly to sites that will not affect function. Small-molecule targeted RNA degradation will thus provide a general route to affect RNA biology. A non-oligonucleotide-containing compound was designed from sequence to target the precursor to oncogenic microRNA-21 (pre-miR-21) for enzymatic destruction with selectivity that can exceed that for protein-targeted medicines. The compound specifically binds the target and contains a heterocycle that recruits and activates a ribonuclease to pre-miR-21 to substoichiometrically effect its cleavage and subsequently impede metastasis of breast cancer to lung in a mouse model. Transcriptomic and proteomic analyses demonstrate that the compound is potent and selective, specifically modulating oncogenic pathways. Thus, small molecules can be designed from sequence to have all of the functional repertoire of oligonucleotides, including inducing enzymatic degradation, and to selectively and potently modulate RNA function in vivo.


Assuntos
Neoplasias da Mama/tratamento farmacológico , MicroRNAs/metabolismo , Ribonucleases/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Humanos , Camundongos , MicroRNAs/química , Estrutura Molecular , Metástase Neoplásica , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ribonucleases/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
5.
Chembiochem ; 21(22): 3229-3233, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32649032

RESUMO

RNA molecules both contribute to and are causative of many human diseases. One method to perturb RNA function is to target its structure with small molecules. However, discovering bioactive ligands for RNA targets is challenging. Here, we show that the bioactivity of a linear dimeric ligand that inactivates the RNA trinucleotide repeat expansion that causes myotonic dystrophy type 1 [DM1; r(CUG)exp ] can be improved by macrocyclization. Indeed, the macrocyclic compound is ten times more potent than the linear compound for improving DM1-associated defects in cells, including in patient-derived myotubes (muscle cells). This enhancement in potency is due to the macrocycle's increased affinity and selectively for the target, which inhibit r(CUG)exp 's toxic interaction with muscleblind-like 1 (MBNL1), and its superior cell permeability. Macrocyclization could prove to be an effective way to enhance the bioactivity of modularly assembled ligands targeting RNA.


Assuntos
RNA/química , Bibliotecas de Moléculas Pequenas/química , Ciclização , Humanos , Ligantes , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Expansão das Repetições de Trinucleotídeos
6.
Biochemistry ; 56(27): 3463-3474, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28617590

RESUMO

RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Modelos Moleculares , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , RNA Mensageiro/química , Expansão das Repetições de Trinucleotídeos , Regiões 3' não Traduzidas , Pareamento de Bases , Transferência de Energia , Éxons , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/química , Miotonina Proteína Quinase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Dobramento de RNA , RNA Mensageiro/metabolismo , Uridina/análogos & derivados , Uridina/química
7.
Biochemistry ; 54(24): 3851-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26039897

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/química , Precursores de RNA/química , RNA Mensageiro/química , Ataxias Espinocerebelares/genética , Ataxina-10 , Cristalização , Cristalografia por Raios X , Expansão das Repetições de DNA/genética , DNA Recombinante/metabolismo , Humanos , Ligação de Hidrogênio , Íntrons , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ataxias Espinocerebelares/metabolismo , Eletricidade Estática , Propriedades de Superfície
8.
Org Biomol Chem ; 12(7): 1029-39, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24357181

RESUMO

RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.


Assuntos
RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , RNA/química , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
9.
J Chem Theory Comput ; 20(10): 4363-4376, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728627

RESUMO

Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA's 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.


Assuntos
Conformação de Ácido Nucleico , RNA , RNA/química , Termodinâmica , Algoritmos , Dimerização
10.
J Am Chem Soc ; 135(9): 3528-38, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23441937

RESUMO

One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded CAG repeats can cause Huntington's and other disease through translation of toxic proteins. Herein, a crystal structure of r[5'UUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that shows both anti-anti and syn-anti orientations for 1 × 1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using AMBER force field in explicit solvent were run for over 500 ns on the model systems r(5'GCGCAGCGC)2 (MS1) and r(5'CCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti ↔ anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, an explicit solvent MD simulation over 800 ns was run on r[5'GGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1 × 1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and to develop small molecules that target RNA dynamic ensembles.


Assuntos
RNA/química , Expansão das Repetições de Trinucleotídeos , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico
11.
Biochemistry ; 51(16): 3508-22, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22490167

RESUMO

Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six additional duplexes with the 5'GG/3'UU motif were added to the single representation in the previous database. This revises the ΔG°(37) for the 5'GG/3'UU motif from an unfavorable 0.5 kcal/mol to a favorable -0.2 kcal/mol. Similarly, the ΔG°(37) for the 5'UG/3'GU motif changes from 0.3 to -0.6 kcal/mol. The correlation coefficients between predicted and experimental ΔG°(37), ΔH°, and ΔS° for the expanded database are 0.95, 0.89, and 0.87, respectively. The results should improve predictions of RNA secondary structure.


Assuntos
Pareamento de Bases , RNA/química , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Termodinâmica
12.
J Am Chem Soc ; 134(17): 7450-8, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22428783

RESUMO

Detailed experimental and computational studies revealed the important role that hydrophobic interactions play in the aqueous assembly of rigid small molecule-DNA hybrid (rSMDH) building blocks into nanoscale cage and face-to-face (ff) dimeric structures. In aqueous environments, the hydrophobic surfaces of the organic cores in these nanostructures are minimized by interactions with the core in another rSMDHs, with the bases in the attached DNA strands, and/or with the base pairs in the final assembled structures. In the case that the hydrophobic surfaces of the cores could not be properly isolated in the assembly process, an ill-defined network results instead of dimers, even at low concentration of DNA. In contrast, if ff dimers can be formed with good minimization of the exposed hydrophobic surfaces of the cores, they are highly stable structures with enhanced melting temperatures and cooperative melting behavior.


Assuntos
DNA/química , Bibliotecas de Moléculas Pequenas/química , DNA/síntese química , Dimerização , Congelamento , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/síntese química
13.
Front Mol Biosci ; 9: 830161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480881

RESUMO

Expansions of RNA AUUCU, CCUG, CAG, and CUG repeats cause spinocerebellar ataxia type 10, myotonic dystrophy type 2, Huntington's disease, and myotonic dystrophy type 1, respectively. By performing extensive molecular dynamic simulations, we investigated the bending propensities and conformational landscapes adopted by 3×3, 2×2, and 1×1 internal loops observed in RNA AUUCU, CCUG, CAG, and CUG repeat expansions using model systems having biologically relevant repeat sizes. We show that the conformational variability experienced by these loops is more complex than previous reports where a variety of unconventional hydrogen bonds are formed. At the global scale, strong bending propensity was observed in r(AUUCU)10, r(CCUG)15, r(CAG)20, and r(CUG)20, and, to a lesser extent, in r(AUUCU)4, r(CCUG)10, r(CAG)10, and r(CUG)10. Furthermore, RNA CAG repeats exhibit a tendency toward bent states with more than 50% of observed conformations having bending angles greater than 50°, while RNA CUG repeats display relatively linear-like conformations with extremely bent conformations accounting for less than 25% of the observed structures. Conformations experienced by RNA AUUCU repeats are a combination of strongly bent and kinked structures. The bent states in RNA CCUG repeats mostly fall into the moderately bent category with a marginal ensemble experiencing extreme bending. The general pattern observed in all the bent structures indicates the collapse of the major groove width as the mechanical trigger for bending, which is caused by alteration of base pair step parameters at multiple locations along the RNA due to local distortions at the loop sites. Overextension is also observed in all the RNA repeats that is attributed to widening of the major groove width as well as undertwisting phenomenon. This information and the rich structural repository could be applied for structure based small molecule design targeting disease-causing RNAs. The bending propensities of these constructs, at the global level, could also have implications on how expanded RNA repeats interact with proteins.

14.
J Chem Theory Comput ; 18(6): 3637-3653, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35652685

RESUMO

RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.


Assuntos
Simulação de Dinâmica Molecular , RNA , DNA/química , Fosfatos de Dinucleosídeos/química , Conformação de Ácido Nucleico , Purinas , Pirimidinas , RNA/química , Termodinâmica
15.
Proc Natl Acad Sci U S A ; 105(31): 10779-84, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18669660

RESUMO

FRET between the zinc porphyrin (ZnP) chromophore in zinc-substituted cytochrome c (Zn-cyt c) and an Alexa Fluor dye attached to specific surface sites was used to characterize Zn-cyt c unfolding. The use of ZnP as a fluorescent acceptor eliminates the need to doubly label the protein with exogenous dyes to perform FRET experiments in which both donor and acceptor fluorescence is monitored. The requirement for attachment of only one dye also minimizes perturbation to the protein. This sensitive technique allowed for the determination of distances between the label placed at six different sites and ZnP through a range of denaturant concentrations. Fitting of the data to a three-state model provides distances in the unfolding intermediate. The use of ZnP as a fluorescent acceptor of energy in FRET has a significant potential for application to a range of other systems including heme-binding proteins and proteins to which a covalently attached heme tag may be added.


Assuntos
Citocromos c/química , Metaloporfirinas/química , Modelos Moleculares , Dobramento de Proteína , Zinco/química , Transferência Ressonante de Energia de Fluorescência/métodos
16.
ACS Med Chem Lett ; 12(6): 907-914, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141068

RESUMO

RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion [r(CUG)exp] causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.

17.
ACS Chem Neurosci ; 12(21): 4076-4089, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677935

RESUMO

The hexanucleotide repeat expansion GGGGCC [r(G4C2)exp] within intron 1 of C9orf72 causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(G4C2)exp RNA gain- and loss-of-function mechanisms. The r(G4C2)exp RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(G4C2)exp. Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(G4C2)exp hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Humanos , RNA/genética
18.
Cell Chem Biol ; 28(1): 34-45.e6, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33157036

RESUMO

Many diseases are caused by toxic RNA repeats. Herein, we designed a lead small molecule that binds the structure of the r(CUG) repeat expansion [r(CUG)exp] that causes myotonic dystrophy type 1 (DM1) and Fuchs endothelial corneal dystrophy (FECD) and rescues disease biology in patient-derived cells and in vivo. Interestingly, the compound's downstream effects are different in the two diseases, owing to the location of the repeat expansion. In DM1, r(CUG)exp is harbored in the 3' untranslated region, and the compound has no effect on the mRNA's abundance. In FECD, however, r(CUG)exp is located in an intron, and the small molecule facilitates excision of the intron, which is then degraded by the RNA exosome complex. Thus, structure-specific, RNA-targeting small molecules can act disease specifically to affect biology, either by disabling the gain-of-function mechanism (DM1) or by stimulating quality control pathways to rid a disease-affected cell of a toxic RNA (FECD).


Assuntos
Exossomos/efeitos dos fármacos , Distrofia Endotelial de Fuchs/tratamento farmacológico , Distrofia Miotônica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Células Cultivadas , Exossomos/metabolismo , Feminino , Distrofia Endotelial de Fuchs/metabolismo , Humanos , Masculino , Distrofia Miotônica/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
19.
Sci Transl Med ; 13(617): eabd5991, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705518

RESUMO

The most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD) is an expanded G4C2 RNA repeat [r(G4C2)exp] in chromosome 9 open reading frame 72 (C9orf72), which elicits pathology through several mechanisms. Here, we developed and characterized a small molecule for targeted degradation of r(G4C2)exp. The compound was able to selectively bind r(G4C2)exp's structure and to assemble an endogenous nuclease onto the target, provoking removal of the transcript by native RNA quality control mechanisms. In c9ALS patient­derived spinal neurons, the compound selectively degraded the mutant C9orf72 allele with limited off-targets and reduced quantities of toxic dipeptide repeat proteins (DPRs) translated from r(G4C2)exp. In vivo work in a rodent model showed that abundance of both the mutant allele harboring the repeat expansion and DPRs were selectively reduced by this compound. These results demonstrate that targeted small-molecule degradation of r(G4C2)exp is a strategy for mitigating c9ALS/FTD-associated pathologies and studying disease-associated pathways in preclinical models.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Humanos , Ribonucleases
20.
Nat Chem ; 12(10): 952-961, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839603

RESUMO

Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis in human endothelial cells, and increasing its expression is a potential treatment for heart failure. Here, we report the design of a small molecule (TGP-377) that specifically and potently enhances VEGFA expression by the targeting of a non-coding microRNA that regulates its expression. A selection-based screen, named two-dimensional combinatorial screening, revealed preferences in small-molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules. The screening program increased the dataset of known RNA motif-small molecule binding partners by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor, which represses Vegfa messenger RNA translation, is druggable in a selective manner. We designed TGP-377 to potently and specifically upregulate VEGFA in human umbilical vein endothelial cells. These studies illustrate the power of two-dimensional combinatorial screening to define molecular recognition events between 'undruggable' biomolecules and small molecules, and the ability of sequence-based design to deliver efficacious structure-specific compounds.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , MicroRNAs/química , MicroRNAs/metabolismo , Dobramento de RNA , Bibliotecas de Moléculas Pequenas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MicroRNAs/genética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA