Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 21(1): 584-7, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21084194

RESUMO

A novel series of pyrrolopyrazole-based protein kinase C ß II inhibitors has been identified from high-throughput screening. Herein, we report our initial structure-activity relationship studies with a focus on optimizing compound ligand efficiency and physicochemical properties, which has led to potent inhibitors with good cell permeability.


Assuntos
Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirazóis/química , Ensaios de Triagem em Larga Escala , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 20(24): 7429-34, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21036042

RESUMO

HIV-1 integrase is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the discovery of azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. N-Methyl hydroxamic acids were stable against oxidative metabolism, however were cleared rapidly through phase 2 glucuronidation pathways. We were able to introduce polar groups at the ß-position of the azaindole core thereby altering physical properties by lowering calculated log D values (c Log D) which resulted in attenuated clearance rates in human hepatocytes. Pharmacokinetic data in dog for representative compounds demonstrated moderate oral bioavailability and reasonable half-lives. These ends were accomplished without a large negative impact on enzymatic and antiviral activity, thus suggesting opportunities to alter clearance parameters in future series.


Assuntos
Inibidores de Integrase de HIV/química , Integrase de HIV/química , HIV-1/enzimologia , Ácidos Hidroxâmicos/química , Indóis/química , Administração Oral , Animais , Cães , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacocinética , Inibidores de Integrase de HIV/toxicidade , Meia-Vida , Hepatócitos/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/toxicidade , Relação Estrutura-Atividade
3.
Sci Transl Med ; 12(533)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132215

RESUMO

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.


Assuntos
Artrite Experimental , Corticosteroides , Animais , Artrite Experimental/tratamento farmacológico , Cartilagem , Humanos , Peptídeos , Ratos , Esteroides
4.
J Mol Biol ; 432(14): 3989-4009, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32304700

RESUMO

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Animais , Antígenos CD/química , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Cistina/química , Cistina/genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Neurotensina/química , Neurotensina/farmacologia , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/química , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/genética
5.
Eur J Pharmacol ; 627(1-3): 16-25, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19850035

RESUMO

Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.


Assuntos
Complicações do Diabetes/metabolismo , Descoberta de Drogas , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Doenças Retinianas/metabolismo , Vasos Retinianos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Animais , Bovinos , Linhagem Celular , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/enzimologia , Modelos Animais de Doenças , Humanos , Masculino , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Ratos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/enzimologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA