Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433173

RESUMO

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

2.
Sci Total Environ ; 928: 172422, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614329

RESUMO

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

3.
Biosens Bioelectron ; 251: 116127, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382272

RESUMO

Owing to advantage in high sensitivity and fast response, aptamer based electrochemical biosensors have attracted much more attention. However, inappropriate interfacial engineering strategy leads to poor recognition performance, which ascribe to the following factors of immobilized oligonucleotide strand including steric hindrance, interchain entanglement, and unfavorable conformation. In this work, we proposed a DNA tetrahedron based diblock aptamer immobilized strategy for the construction of label-free electrochemical biosensor. The diblock aptamer sequence is composite of T-rich anchor domain and recognition domain, where T-rich domain enabling anchored on the edge of DNA tetrahedron via Hoogsteen hydrogen bond at neutral condition. The DNA tetrahedron scaffold offers an appropriate lateral space for target recognition of diblock aptamer. More importantly, this trivalent aptamer recognition interface can be regenerated by simply adjusting the pH environment to alkaline, resulting in the dissociation of diblock aptamer. Under the optimum condition, proposed electrochemical aptasensor manifested a satisfied sensitivity for aminoglycosides antibiotic, kanamycin with a limit of detection of 0.69 nM, which is 45-fold lower than traditional Au-S immobilization strategy. Moreover, the proposed aptasensor had also successfully been extended to ampicillin detection by changing the sequence of recognition domain in diblock aptamer. This work paves a new way for the rational design of aptamer-based electrochemical sensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antibacterianos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , DNA/química , Canamicina , Técnicas Eletroquímicas , Limite de Detecção , Ouro/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123807, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154306

RESUMO

Due to the threat of lead pollution to health, environmental and food safety, developing simple and fast detection methods is highly required. Whereas, traditional single-mode probe suffers from limited application scenario. In this study, a colorimetric and fluorometric dual-mode probe for Pb2+ determination was constructed by using bifunctional G-quadruplex-hemin complex. In this dual-mode probe, enzyme strand and substrate strand of 8-17 DNAzyme are labeled with G-quadruplex-hemin complex and fluorophore, respectively. In the absence of Pb2+, the self-assembly of enzyme strand and substrate strand inhibits intrinsic mimic peroxidase of G-quadruplex-hemin complex by base-pairing, which also quench the fluorescence via in proximity effect. When the DNAzyme is activated by Pb2+, the quenched fluorescence is restored as well as the inherent peroxidase mimetic activity, leading to dual signal output. Under optimal conditions, this dual-mode probe exhibit a good linear relationship between logarithm of Pb2+ concentration and signal difference within the range from 1.5 nM to 20 nM and 0.5 nM to 10 nM for colorimetric and fluorescence mode, respectively. The detection limits for the corresponding mode were estimated to be 1.29 nM and 0.16 nM, respectively. This dual-mode probe also successfully applied for the spiked river water assay with satisfactory recovery in the range of 93.2 %-115.3 %. This work paves a new way for DNAzyme based dual-mode probe construction.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Hemina , Chumbo , Colorimetria/métodos , Corantes , Peroxidases , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA