Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(2): 790-797, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31829499

RESUMO

A novel and unusual palladium-catalyzed [4+2] annulation of cyclopropenes with benzosilacyclobutanes is reported. This reaction occurred through chemoselective Si-C(sp2 ) bond activation in synergy with ring expansion/insertion of cyclopropenes to form new C(sp2 )-C(sp3 ) and Si-C(sp3 ) bonds. An array of previously elusive bicyclic skeleton with high strain, silabicyclo[4.1.0]heptanes, were formed in good yields with excellent diastereoselectivity under mild conditions. An asymmetric version of the reaction with a chiral phosphoramidite ligand furnished a variety of chiral bicyclic silaheterocycle derivatives with good enantioselectivity (up to 95.5:4.5 er). Owing to the mild reaction conditions, the good stereoselectivity profile, and the ready availability of the functionalized precursors, this process constitutes a useful and straightforward strategy for the synthesis of densely functionalized silacycles.

2.
Chirality ; 27(8): 459-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25820534

RESUMO

A novel phenylacetylene monomer having a perfluorinated alkyl group (M-F) was synthesized and polymerized in a chiral catalytic system to yield a one-handed helical polymer. The ability and efficiency of the chiral induction of the fluorine-containing monomer in the helix-sense-selective polymerization (HSSP) was much higher than those of a monomer having the corresponding alkyl group (M-H) we reported before. The resulting polymer showed cis-cisoidal one-handed helical conformation, and was suitable for highly selective photocyclic aromatization (SCAT) to give a 2D surface modifier (). Oxygen permselectivity through a base polymer membrane was highly enhanced from 1.83 to 2.36 by adding a small amount (1-5 wt%) of the 2D surface modifier . The improvement was thought to be caused by improvement of solution selectivity on the membrane surface which the 2D surface modifier effectively covered.

3.
Chem Sci ; 12(41): 13737-13743, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760158

RESUMO

Catalytic asymmetric variants for functional group transformations based on carbon-carbon bond activation still remain elusive. Herein we present an unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C(sp2)-C(sp2) σ bond activation and click desymmetrization to form synthetically versatile and value-added oxaspiro products. The operationally straightforward and enantioselective palladium-catalyzed atom-economic annulation process exploits a TADDOL-derived bulky P-ligand bearing a large cavity to control enantioselective spiro-annulation that converts cyclopropenones and cyclic 1,3-diketones into chiral oxaspiro cyclopentenone-lactone scaffolds with good diastereo- and enantio-selectivity. The click-like reaction is a successful methodology with a facile construction of two vicinal carbon quaternary stereocenters and can be used to deliver additional stereocenters during late-state functionalization for the synthesis of highly functionalized or more complex molecules.

4.
Nat Commun ; 11(1): 2904, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518227

RESUMO

Hydrosilylation of unsaturated carbon-carbon bonds with hydrosilanes is a very important process to access organosilicon compounds and ranks as one of the most fundamental reactions in organic chemistry. However, catalytic asymmetric hydrosilylation of activated alkenes and internal alkenes has proven elusive, due to competing reduction of carbon-carbon double bond or isomerization processes. Herein, we report a highly enantioselective Si-C coupling by hydrosilylation of carbonyl-activated alkenes using a palladium catalyst with a chiral TADDOL-derived phosphoramidite ligand, which inhibits O-hydrosilylation/olefin reduction. The stereospecific Si-C coupling/hydrosilylation of maleimides affords a series of silyl succinimides with up to 99% yield, >99:1 diastereoselectivity and >99:1 enantioselectivity. The high degree of stereoselectivity exerts remote control of axial chirality, leading to functionalized, axially chiral succinimides which are versatile building blocks. The product utility is highlighted by the enantioselective construction of N-heterocycles bearing up to three stereocenters.

5.
iScience ; 23(7): 101268, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599559

RESUMO

Chirality widely exists in a diverse array of biologically active molecules and life forms, and the catalytic constructions of chiral molecules have triggered a heightened interest in the fields of chemistry and materials and pharmaceutical sciences. However, the synthesis of silicon-stereogenic organosilicon compounds is generally recognized as a much more difficult task than that of carbon-stereogenic centers because of no abundant organosilicon-based chiral sources in nature. Herein, we reported a highly enantioselective rhodium-catalyzed trans-selective hydrosilylation of silicon-tethered bisalkynes to access chiral benzosiloles bearing a silicon-stereogenic center. This protocol featured with chiral Ar-BINMOL-Phos bearing hydrogen-bond donors as a privileged P-ligand for catalytic asymmetric hydrosilylation that is operationally simple and has 100% atom-economy with good functional group tolerability as well as high enantioselectivity (up to >99:1 er). Benefiting from the trans-selective hydrosilylation with the aid of Rh/Ar-BINMOL-Phos-based asymmetric catalysis, the Si-stereogenic benzosiloles exhibited pronounced aggregation-induced emission (AIE) and circularly polarized luminescence (CPL) activity.

6.
Chem Commun (Camb) ; 55(95): 14363-14366, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31720613

RESUMO

A unique 1,3-dipolar [3+2] cycloaddition of alkyl 4-oxo-4-arylbut-2-enoates bearing two different electron-withdrawing groups was completed by using the silver/(R)-DTBM-Segphos catalyst system, which gives the corresponding fully substituted pyrrolidines with four stereogenic centers in good yields and with excellent enantioselectivities (up to 98% ee).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA