Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 34(11): 52, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855967

RESUMO

Silver nanoparticles (AgNPs) have durable and remarkable antimicrobial effects on pathogenic microorganisms, such as bacteria and fungi, in dental plaques. As such, they are widely added to dental restoration materials, including composite resins, denture bases, adhesives, and implants, to solve the problems of denture stomatitis, peri-implant inflammation, and oral infection caused by the long-term use of these dental restoration materials. However, AgNPs can be absorbed into the blood circulatory system through the nasal/oral mucosa, lungs, gastrointestinal tract, skin, and other pathways and then distributed into the lungs, kidneys, liver, spleen, and testes, thereby causing toxic injury to these tissues and organs. It can even be transported across the blood-brain barrier (BBB) and continuously accumulate in brain tissues, causing injury and dysfunction of neurons and glial cells; consequently, neurotoxicity occurs. Other nanomaterials with antibacterial or remineralization properties are added to dental restoration materials with AgNPs. However, studies have yet to reveal the neurotoxicity caused by dental restoration materials containing AgNPs. In this review, we summarize the application of AgNPs in dental restoration materials, the mechanism of AgNPs in cytotoxicity and toxic injury to the BBB, and the related research on the accumulation of AgNPs to cause changes of neurotoxicity. We also discuss the mechanisms of neurotoxicity caused by AgNPs and the mode and rate of AgNPs released from dental restorative materials added with AgNPs to evaluate the probability of neurotoxic injury to the central nervous system (CNS), and then provide a theoretical basis for developing new composite dental restoration materials. Mechanism of neurotoxicity caused by AgNPs: AgNPs in the blood circulation enter the brain tissue after being transported across the BBB through transendothelial cell pathway and paracellular transport pathway, and continuously accumulate in brain tissue, causing damage and dysfunction of neurons and glial cells which ultimately leads to neurotoxicity. The uptake of AgNPs by neurons, astrocytes and microglia causes damage to these cells. AgNPs with non-neurotoxic level often increases the secretion of a variety of cytokines, up-regulates the expression of metallothionein in glial cells, even up-regulates autophagy and inflammation response to protect neurons from the toxic damage of AgNPs. However, the protective effect of glial cells induced by AgNPs exposure to neurotoxic levels is insufficient, which leads to neuronal damage and dysfunction and even neuronal programmed cell death, eventually cause neurotoxicity.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Prata/farmacologia , Nanopartículas Metálicas/toxicidade , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo , Inflamação/metabolismo
2.
Immun Inflamm Dis ; 12(5): e1272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780047

RESUMO

BACKGROUND: Peri-implantitis and periodontitis have similar immunological bioprocesses and inflammatory phenotypes. In the inflammatory process, the adaptive immune cells can drive the development of disease. This research investigated the differences and diagnostic significance of peri-implantitis and periodontitis in adaptive immune responses. METHODS: We acquired four GEO datasets of gene expressions in surrounding tissues in healthy person, healthy implant, periodontitis, and peri-implantitis patients. The structural characteristics and enrichment analyses of differential expression genes were examined. The adaptive immune landscapes in peri-implantitis and periodontitis were then evaluated using single sample gene set enrichment analysis. The STRING database and Cytoscape were used to identify adaptive hub genes, and the ROC curve was used to verify them. Finally, qRT-PCR method was used to verify the expression level of Hub gene in activated T cells on the titanium-containing or titanium-free culture plates. RESULTS: At the transcriptome level, the data of healthy implant, peri-implantitis and periodontitis were highly dissimilar. The peri-implantitis and periodontitis both exhibited adaptive immune response. Except for the activated CD4+T cells, there was no significant difference in other adaptive immune cells between peri-implantitis and periodontitis. In addition, correlation analysis showed that CD53, CYBB, and PLEK were significantly positively linked with activated CD4+T cells in the immune microenvironment of peri-implantitis, making them effective biomarkers to differentiate it from periodontitis. CONCLUSIONS: Peri-implantitis has a uniquely immunogenomic landscape that differs from periodontitis. This study provides new insights and ideas into the activated CD4+T cells and hub genes that underpin the immunological bioprocess of peri-implantitis.


Assuntos
Imunidade Adaptativa , Biologia Computacional , Peri-Implantite , Periodontite , Humanos , Peri-Implantite/genética , Peri-Implantite/imunologia , Peri-Implantite/diagnóstico , Periodontite/genética , Periodontite/imunologia , Periodontite/diagnóstico , Imunidade Adaptativa/genética , Biologia Computacional/métodos , Transcriptoma , Perfilação da Expressão Gênica
3.
Front Oncol ; 13: 1141191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188204

RESUMO

Background: The composition of the tumor microbial microenvironment participates in the whole process of tumor disease. However, due to the limitations of the current technical level, the depth and breadth of the impact of microorganisms on tumors have not been fully recognized, especially in prostate cancer (PCa). Therefore, the purpose of this study is to explore the role and mechanism of the prostate microbiome in PCa based on bacterial lipopolysaccharide (LPS)-related genes by means of bioinformatics. Methods: The Comparative Toxicogenomics Database (CTD) was used to find bacterial LPS- related genes. PCa expression profile data and clinical data were acquired from TCGA, GTEx, and GEO. The differentially expressed LPS-related hub genes (LRHG) were obtained by Venn diagram, and gene set enrichment analysis (GSEA) was used to investigate the putative molecular mechanism of LRHG. The immune infiltration score of malignancies was investigated using single-sample gene set enrichment analysis (ssGSEA). Using univariate and multivariate Cox regression analysis, a prognostic risk score model and nomogram were developed. Results: 6 LRHG were screened. LRHG were involved in functional phenotypes such as tumor invasion, fat metabolism, sex hormone response, DNA repair, apoptosis, and immunoregulation. And it can regulate the immune microenvironment in the tumor by influencing the antigen presentation of immune cells in the tumor. And a prognostic risk score and the nomogram, which were based on LRHG, showed that the low-risk score has a protective effect on patients. Conclusion: Microorganisms in the PCa microenvironment may use complex mechanism and networks to regulate the occurrence and development of PCa. Bacterial lipopolysaccharide-related genes can help build a reliable prognostic model and predict progression-free survival in patients with prostate cancer.

4.
Front Oncol ; 11: 805459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956913

RESUMO

Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA