Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 5167-5174, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442484

RESUMO

Exploring highly effective bifunctional electrocatalysts with surface structural advantages and synergistic optimization effects among multimetals is greatly important for overall water splitting. Herein, we successfully synthesized Pt-loaded NiFe-metal-organic framework nanosheet arrays grown on nickel foam (Pt-NiFe-MOF/NF) via a facile hydrothermal-electrodeposition process. Benefiting from large exposed specific surface, optimal electrical conductivity and efficient metal-support interaction endow Pt-NiFe-MOF/NF with highly catalytic performance, exhibiting small overpotential of 261 mV toward oxygen evolution reaction and 125 mV toward hydrogen evolution reaction at a current density of 100 mA cm-2 in alkaline medium. More significantly, the assembled water electrolyzer comprising the Pt-NiFe-MOF/NF//Pt-NiFe-MOF/NF couple demands a low cell voltage of 1.45 V to reach 10 mA cm-2. This work renders a viable approach to design dual-functional electrocatalysts with exceptional electrocatalytic activity and stability at high current density, showing the great prospect of water electrolysis for commercial application.

2.
Inorg Chem ; 62(1): 609-617, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573767

RESUMO

Rational design of facile and low-cost efficient electrocatalysts for oxygen evolution reaction (OER) is crucial to solve the energy crisis. Benefiting from in situ self-reconstruction from metal-organic frameworks (MOFs) to (oxy)hydroxides in alkaline electrolytes, MOFs have become alternative OER catalysts. Thus, Fe-doped Co-MOF nanosheets (Co-MOF/Fe) were prepared and utilized straightforwardly as OER electrocatalysts. CoFe-layered bimetallic hydroxides (CoFe-LDHs) with abundant active sites are obtained from in situ conversion of Co-MOF/Fe after etching by the KOH electrolyte, which are generally actual active species. Meanwhile, the introduction of Fe ions will also produce a synergistic effect that greatly improves the electrocatalytic OER performance. The optimized catalyst (Co-MOF/Fe10) shows exceptional OER activity (η10 = 260 mV) and excellent durability over 50 h. The outstanding OER performance of Co-MOF/Fe10 can also be reflected in the two-electrode hydrolyzer (1.57 V at 10 mA cm-2). This study offers a pathway to probe the catalytic mechanism of MOFs and the rational construction of efficient MOF-derived catalysts.

3.
Inorg Chem ; 62(49): 20072-20079, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015173

RESUMO

The fabrication of hollow nanoelectrocatalysts with multilayered heterogeneous interfaces, derived from metal-organic framework (MOF) materials, represents a highly efficient strategy that promotes the oxygen evolution reaction (OER). Within this research, we successfully synthesized a hollow nanobox of Ir-doped ZIF-67@CoFe PBA with bilayer heterointerfaces. The distinctive structure of Ir-ZIF-67@CoFe PBA provides a substantial number of active sites for reaction intermediates, resulting in improved utilization of precious metals. Furthermore, experimental results indicate the outstanding electrocatalytic performance of the optimized Ir-ZIF-67@CoFe PBA, as indicated by a mere 269 mV overpotential at 10 mA·cm-2, accompanied by a small Tafel slope of 80.1 mV·dec-1. Moreover, the Schottky junction formed between the heterojunction and Ir within Ir-ZIF-67@CoFe PBA accelerates the electron-transfer rate, contributing to its exceptional catalytic performance compared to that of a catalyst derived solely from ZIF-67. This distinctive feature of the catalyst holds tremendous application value.

4.
Nanoscale ; 15(9): 4523-4528, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757179

RESUMO

Exploiting Earth-abundant and highly effective electrocatalysts toward the oxygen evolution reaction (OER) is critical for boosting water splitting efficiency. Herein, we proposed a novel in situ phosphoselenization strategy to fabricate heterostructured NiSe2/Ni2P/FeSe2 (NiFePSe) nanocages with a modified electronic structure and well-defined nanointerfaces. Owing to the strong interfacial coupling and synergistic effect among the three components, the prepared NiFePSe nanocages exhibit superior OER performance with an ultralow overpotential of 242 mV at 10 mA cm-2 and a small Tafel slope of 55.8 mV dec-1 along with robust stability in 1 M KOH. Remarkably, the highly open 3D porous architecture, delicate internal voids, and numerous surface defects endow the NiFePSe nanocages with abundant active sites and enhanced electron mobility. In addition, the super-hydrophilic surface is conducive to facilitating mass transfer between the electrolyte and electrode and rapidly releasing the bubbles. This work may lead to new breakthroughs in the tuning of multi-component transition metal catalysts and the designing of highly active and durable materials for water splitting.

5.
J Colloid Interface Sci ; 639: 214-222, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805746

RESUMO

Developing highly efficient electrocatalysts based on appropriate heterojunction engineering and electronic structure modification for the oxygen evolution reaction (OER) has been extensively recognized as an effective approach to increase the efficiency of water splitting. Herein, ultralow Pt-loaded (1 %) NiCoFeP@NiCoFe-PBA hollow nanocages with well-defined heterointerfaces and modified electronic environment are successfully fabricated. As expected, the obtained Pt-NiCoFeP@NiCoFe-PBA exhibits outstanding performance with a low overpotential of 255 mV at 10 mA cm-2 and a small Tafel slope of 57.2 mV dec-1. More specifically, the highly open three-dimensional structure, exquisite interior voids and abundant surface defects endow Pt-NiCoFeP@NiCoFe-PBA nanocages with more electrochemical active sites. Meanwhile, experimental results and mechanism studies also reveal that the construction of heterogeneous interfaces as well as incorporation of noble metals could readily induce strong synergistic effects and significantly tailor electronic configurations to optimize the binding energy of the intermediates, thereby achieving prominent OER performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA