Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28321909

RESUMO

Insects rely heavily on their sophisticated chemosensory systems to locate host plants and find conspecific mates. Although the molecular mechanisms of odorant recognition in many Lepidoptera species have been well explored, limited information has been reported on the geometrid moth Ectropis obliqua Prout, an economically important pest of tea plants. In the current study, we first attempted to identify and characterize the putative olfactory carrier proteins, including odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). By analyzing previously obtained transcriptomic data of third-instar larvae, five OBPs and 14 CSPs in E. obliqua were identified. Sequence alignment, conserved motif identification, and phylogenetic analysis suggested that candidate proteins have typical characteristics of the insect OBP or CSP family. The expression patterns regarding life stages and different tissues were determined by quantitative real-time PCR. The results revealed that four transcripts (OBP2, OBP4 and CSP8, CSP10) had larvae preferential expression profiles and nine candidate genes (PBP1, OBP1 and CSP2, CSP4, CSP5, CSP6, CSP7, CSP11, and CSP13) were adult-biased expressed. Further specific tissue expression profile evaluation showed that OBP1, OBP2, OBP4, and PBP1 were highly expressed at olfactory organs, implying their potential involvement in chemical cue detection, whereas CSPs were ubiquitously detected among all of the tested tissues and could be associated with multiple physiological functions. This study provided a foundation for understanding the physiological functions of OBPs and CSPs in E. obliqua and will help pave the way for the development of a new environmental friendly pest management strategy against the tea geometrid moth.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Receptores Odorantes/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Insetos/química , Larva , Masculino , Filogenia , Receptores Odorantes/química , Alinhamento de Sequência , Olfato , Transcriptoma
2.
PLoS One ; 9(6): e99373, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915522

RESUMO

The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea-growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from susceptible populations, we conducted a nationwide collection and examined the genetic divergence in the COI region of the mtDNA in E. obliqua. Phylogenetic analyses of mtDNA in 17 populations revealed two divergent clades with genetic distance greater than 3.7% between clades and less than 0.7% within clades. Therefore, we suggest that E. obliqua falls into two distinct groups. Further inheritance analyses using reciprocal single-pair mating showed an abnormal F1 generation with an unbalanced sex ratio and the inability to produce fertile eggs (or any eggs) through F1 self-crossing. These data revealed a potential cryptic species complex with deep divergence and reproductive isolation within E. obliqua. Uneven distribution of the groups suggests a possible geographic effect on the divergence. Future investigations will be conducted to examine whether EoNPV selection or other factors prompted the evolution of resistance.


Assuntos
Cruzamento , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Lepidópteros/genética , Chá/parasitologia , Animais , China , Cruzamentos Genéticos , Evolução Molecular , Feminino , Geografia , Padrões de Herança/genética , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Dinâmica Populacional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA