Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(24): 27316-27326, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32436376

RESUMO

Protecting an anode from deterioration during charging/discharging has been seen as one of the key strategies in achieving high-performance lithium (Li)-O2 batteries and other Li-metal batteries with a high energy density. Here, we describe a facile approach to prevent the Li anode from dendritic growth and chemical corrosion by constructing a SiO2/GO hybrid thin layer on the surface. The uniform pore-preserving layer can conduct Li ions in the stripping/plating process, leading to an effective alleviation of the dendritic growth of Li by guiding the ion flux through the microstructure. Such a preservation technique significantly enhances the cell performance by enabling the Li-O2 cell to cycle up to 348 times at 1 A·g-1 with a capacity of 1000 mA·h·g-1, which is several times the cycles of cells with pristine Li (58 cycles), Li-GO (166 cycles), and Li-SiO2 (187 cycles). Moreover, the rate performance is improved, and the ultimate capacity of the cell is dramatically increased from 5400 to 25,200 mA·h·g-1. This facile technology is robust and conforms to the Li surface, which demonstrates its potential applications in developing future high-performance and long lifespan Li batteries in a cost-effective fashion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA