Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36575830

RESUMO

Creating synthetic lines is the standard mating mode for commercial pig production. Traditional mating performance was evaluated through a strictly designed cross-combination test at the 'breed level' to maximize the benefits of production. The Duroc-Landrace-Yorkshire (DLY) three-way crossbred production system became the most widely used breeding scheme for pigs. Here, we proposed an 'individual level' genomic mating procedure that can be applied to commercial pig production with efficient algorithms for estimating marker effects and for allocating the appropriate boar-sow pairs, which can be freely accessed to public in our developed HIBLUP software at https://www.hiblup.com/tutorials#genomic-mating. A total of 875 Duroc boars, 350 Landrace-Yorkshire sows and 3573 DLY pigs were used to carry out the genomic mating to assess the production benefits theoretically. The results showed that genomic mating significantly improved the performances of progeny across different traits compared with random mating, such as the feed conversion rate, days from 30 to 120 kg and eye muscle area could be improved by -0.12, -4.64 d and 2.65 cm2, respectively, which were consistent with the real experimental validations. Overall, our findings indicated that genomic mating is an effective strategy to improve the performances of progeny by maximizing their total genetic merit with consideration of both additive and dominant effects. Also, a herd of boars from a richer genetic source will increase the effectiveness of genomic mating further.


Assuntos
Comunicação Celular , Genômica , Suínos/genética , Animais , Feminino , Masculino , Cruzamentos Genéticos , Fenótipo
2.
Nucleic Acids Res ; 51(8): 3501-3512, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809800

RESUMO

Human diseases and agricultural traits can be predicted by modeling a genetic random polygenic effect in linear mixed models. To estimate variance components and predict random effects of the model efficiently with limited computational resources has always been of primary concern, especially when it involves increasing the genotype data scale in the current genomic era. Here, we thoroughly reviewed the development history of statistical algorithms used in genetic evaluation and theoretically compared their computational complexity and applicability for different data scenarios. Most importantly, we presented a computationally efficient, functionally enriched, multi-platform and user-friendly software package named 'HIBLUP' to address the challenges that are faced currently using big genomic data. Powered by advanced algorithms, elaborate design and efficient programming, HIBLUP computed fastest while using the lowest memory in analyses, and the greater the number of individuals that are genotyped, the greater the computational benefits from HIBLUP. We also demonstrated that HIBLUP is the only tool which can accomplish the analyses for a UK Biobank-scale dataset within 1 h using the proposed efficient 'HE + PCG' strategy. It is foreseeable that HIBLUP will facilitate genetic research for human, plants and animals. The HIBLUP software and user manual can be accessed freely at https://www.hiblup.com.


Both human diseases and agricultural traits can be predicted by incorporating phenotypic observations and a relationship matrix among individuals in a linear mixed model. Due to the great demand for processing massive data of genotyped individuals, the existing algorithms that require several repetitions of inverse computing on increasingly big dense matrices (e.g. the relationship matrix and the coefficient matrix of mixed model equations) have encountered a bottleneck. Here, we presented a software tool named 'HIBLUP' to address the challenges. Powered by our advanced algorithms (e.g. HE + PCG), elaborate design and efficient programming, HIBLUP can successfully avoid the inverse computing for any big matrix and compute fastest under the lowest memory, which makes it very promising for genetic evaluation using big genomic data.


Assuntos
Genômica , Modelos Genéticos , Animais , Humanos , Algoritmos , Genoma , Genótipo , Modelos Lineares
3.
Nucleic Acids Res ; 51(D1): D1312-D1324, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300629

RESUMO

With the exponential growth of multi-omics data, its integration and utilization have brought unprecedented opportunities for the interpretation of gene regulation mechanisms and the comprehensive analyses of biological systems. IAnimal (https://ianimal.pro/), a cross-species, multi-omics knowledgebase, was developed to improve the utilization of massive public data and simplify the integration of multi-omics information to mine the genetic mechanisms of objective traits. Currently, IAnimal provides 61 191 individual omics data of genome (WGS), transcriptome (RNA-Seq), epigenome (ChIP-Seq, ATAC-Seq) and genome annotation information for 21 species, such as mice, pigs, cattle, chickens, and macaques. The scale of its total clean data has reached 846.46 TB. To better understand the biological significance of omics information, a deep learning model for IAnimal was built based on BioBERT and AutoNER to mine 'gene' and 'trait' entities from 2 794 237 abstracts, which has practical significance for comprehending how each omics layer regulates genes to affect traits. By means of user-friendly web interfaces, flexible data application programming interfaces, and abundant functional modules, IAnimal enables users to easily query, mine, and visualize characteristics in various omics, and to infer how genes play biological roles under the influence of various omics layers.


Assuntos
Bases de Dados Genéticas , Animais , Regulação da Expressão Gênica , Genoma , Bases de Conhecimento , Software , Multiômica
4.
Anim Genet ; 54(6): 798-802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705280

RESUMO

Umbilical hernia (UH) is a prevalent congenital disorder in pigs, resulting in considerable economic losses and severe animal welfare issues. In the present study, we conducted a genome-wide association study (GWAS) using the GeneSeek 50K Chip in 2777 pigs (Duroc, n = 1267; Landrace, n = 696; and Yorkshire, n = 814) to explore the candidate genes underlying the risk of umbilical hernia in pigs. After quality control analyses, 2748 animals and 48 524 single nucleotide polymorphisms (SNPs) were retained for subsequent GWAS analysis using the FarmCPU model. The heritability of umbilical hernias was estimated to 0.51 ± 0.04, indicating a reasonable basis for investigating genetic markers associated with this disorder. We identified 54 SNPs and 517 candidate genes that showed significant associations with susceptibility to umbilical hernia across the combined population of the three pig breeds. Gene enrichment analyses highlighted several crucial pathways for platelet degranulation, inflammatory mediator regulation of TRP channels and ion transport. These findings provide further insights into the underlying genetic architecture of umbilical hernias in pigs.


Assuntos
Hérnia Umbilical , Doenças dos Suínos , Suínos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Hérnia Umbilical/genética , Hérnia Umbilical/veterinária , Polimorfismo de Nucleotídeo Único , Doenças dos Suínos/genética , Bem-Estar do Animal
5.
Trop Anim Health Prod ; 52(4): 1583-1598, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31828571

RESUMO

Haemonchus contortus is a common, intractably pathogenic and economically important gastrointestinal nematode for goat producers worldwide, especially in tropical and subtropical regions. The objective of this study is to identify single nucleotide polymorphisms (SNPs) of 12 candidate goat genes mainly related to the innate immune response associated with fecal egg counts (FECs) of Haemonchus contortus in goat as an indicator of the level of parasite infection. Phenotypic data including FEC and blood traits were recorded in 189 native goats from China and 191 ones from Bangladesh, respectively. Bangladeshi goats had significantly (P < 0.01) lower FEC compared to that of Chinese goats, suggesting higher susceptible and infection rates in Chinese goat populations. FEC was significantly positive correlated with body weight (r = 0.64, P < 0.01) and hemoglobin (r = 0.49, P < 0.01) value, but negative with pack cell volume (r = - 0.63, P < 0.05) in goats. Genotyping of SNPs was performed using a matrix-assisted laser desorption ionization time of flight mass spectrometry assay and a generalized linear model was used to evaluate the association between each SNP and goat FEC trait. Eleven novel SNPs in the NLRC3, NLRC5, HIP1, and LRP8, out of 46 variants from these 12 genes, were significantly associated with FEC of goats with a nominal significance level of P < 0.05. Of these 11 SNPs, linkage disequilibrium were revealed among SNPs in LRP8 (r2 = 0.87 to 1), between SNPs in NLRC3, NLRC5, and HIP1 (r2 = 0.96 to 0.99), respectively. Further, haplotypes within NLRC3, NLRC5, and HIP1 were significantly associated (P < 0.001) with FEC. In artificial challenge trail, quantitative real-time PCR exposed that the relative expression of mRNA was higher in the resistant group for NLRC3 (P < 0.01), LRP8 and HIP1 (P < 0.001) but lower in the resistant group for NLRC5 (P < 0.0001), compared to the susceptible group. The possible SNP markers and genes identified in this study could be potentially used in marker-assisted selection for breeding local goats breeds resistant to gastrointestinal nematode parasite particularly for Haemonchus contortus, and then for improving health and productivity of goat.


Assuntos
Doenças das Cabras/parasitologia , Hemoncose/veterinária , Haemonchus , Enteropatias Parasitárias/veterinária , Contagem de Ovos de Parasitas/veterinária , Animais , Peso Corporal/genética , Cruzamento , Fezes/parasitologia , Feminino , Predisposição Genética para Doença , Doenças das Cabras/genética , Cabras/genética , Imunidade Inata , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/parasitologia , Polimorfismo de Nucleotídeo Único
6.
Methods Mol Biol ; 2481: 219-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641768

RESUMO

Genome wide association study (GWAS), which is a powerful tool to detect the relationship between the traits of interest and high-density markers, has provided unprecedented insights into the genetic basis of quantitative variation for complex traits. Along with the development of high-throughput sequencing technology, both sample sizes and marker sizes are increasing rapidly, which make computations more challenging than ever. Therefore, to efficiently process big data with limited computing resources in a reasonable time and to use state-of-the-art statistical models to reduce false positive and false negative rates have always been hot topics in the domain of GWAS. In this chapter, we describe how to perform GWAS using an R package, rMVP, which includes data preparation, evaluation of population structure, association tests by different models, and high-quality visualization of GWAS results.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Fenótipo
7.
Genomics Proteomics Bioinformatics ; 19(4): 619-628, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33662620

RESUMO

Along with the development of high-throughput sequencing technologies, both sample size and SNP number are increasing rapidly in genome-wide association studies (GWAS), and the associated computation is more challenging than ever. Here, we present a memory-efficient, visualization-enhanced, and parallel-accelerated R package called "rMVP" to address the need for improved GWAS computation. rMVP can 1) effectively process large GWAS data, 2) rapidly evaluate population structure, 3) efficiently estimate variance components by Efficient Mixed-Model Association eXpedited (EMMAX), Factored Spectrally Transformed Linear Mixed Models (FaST-LMM), and Haseman-Elston (HE) regression algorithms, 4) implement parallel-accelerated association tests of markers using general linear model (GLM), mixed linear model (MLM), and fixed and random model circulating probability unification (FarmCPU) methods, 5) compute fast with a globally efficient design in the GWAS processes, and 6) generate various visualizations of GWAS-related information. Accelerated by block matrix multiplication strategy and multiple threads, the association test methods embedded in rMVP are significantly faster than PLINK, GEMMA, and FarmCPU_pkg. rMVP is freely available at https://github.com/xiaolei-lab/rMVP.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Algoritmos , Estudo de Associação Genômica Ampla/métodos , Modelos Lineares , Software
8.
J Anim Sci ; 99(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34110414

RESUMO

Semen traits are crucial in commercial pig production since semen from boars is widely used in artificial insemination for both purebred and crossbred pig production. Revealing the genetic architecture of semen traits potentially promotes the efficiencies of improving semen traits through artificial selection. This study is aimed to identify candidate genes related to the semen traits in Duroc boars. First, we identified the genes that were significantly associated with three semen traits, including sperm motility (MO), sperm concentration (CON), and semen volume (VOL) in a Duroc boar population through a genome-wide association study (GWAS). Second, we performed a weighted gene co-expression network analysis (WGCNA). A total of 2, 3, and 20 single-nucleotide polymorphisms were found to be significantly associated with MO, CON, and VOL, respectively. Based on the haplotype block analysis, we identified one genetic region associated with MO, which explained 6.15% of the genetic trait variance. ENSSSCG00000018823 located within this region was considered as the candidate gene for regulating MO. Another genetic region explaining 1.95% of CON genetic variance was identified, and, in this region, B9D2, PAFAH1B3, TMEM145, and CIC were detected as the CON-related candidate genes. Two genetic regions that accounted for 2.23% and 2.48% of VOL genetic variance were identified, and, in these two regions, WWC2, CDKN2AIP, ING2, TRAPPC11, STOX2, and PELO were identified as VOL-related candidate genes. WGCNA analysis showed that, among these candidate genes, B9D2, TMEM145, WWC2, CDKN2AIP, TRAPPC11, and PELO were located within the most significant module eigengenes, confirming these candidate genes' role in regulating semen traits in Duroc boars. The identification of these candidate genes can help to better understand the genetic architecture of semen traits in boars. Our findings can be applied for semen traits improvement in Duroc boars.


Assuntos
Estudo de Associação Genômica Ampla , Sêmen , Animais , Estudo de Associação Genômica Ampla/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Análise do Sêmen/veterinária , Contagem de Espermatozoides/veterinária , Motilidade dos Espermatozoides/genética , Suínos/genética
9.
Genome Biol ; 21(1): 146, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552725

RESUMO

Advances in high-throughput sequencing technologies have reduced the cost of genotyping dramatically and led to genomic prediction being widely used in animal and plant breeding, and increasingly in human genetics. Inspired by the efficient computing of linear mixed model and the accurate prediction of Bayesian methods, we propose a machine learning-based method incorporating cross-validation, multiple regression, grid search, and bisection algorithms named KAML that aims to combine the advantages of prediction accuracy with computing efficiency. KAML exhibits higher prediction accuracy than existing methods, and it is available at https://github.com/YinLiLin/KAML.


Assuntos
Genômica/métodos , Aprendizado de Máquina , Modelos Genéticos , Característica Quantitativa Herdável , Software , Animais , Bovinos , Humanos , Modelos Estatísticos
10.
J Anim Sci Biotechnol ; 11(1): 115, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33292532

RESUMO

BACKGROUND: A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. RESULTS: In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). CONCLUSION: Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits.

11.
Front Genet ; 11: 183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292414

RESUMO

Birth weight of pigs is an important economic factor in the livestock industry. The identification of the genes and variants that underlie birth weight is of great importance. In this study, we integrated two genotyping methods, single nucleotide polymorphism (SNP) chip analysis and restriction site associated DNA sequencing (RAD-seq) to genotype genome-wide SNPs. In total, 45,175 and 139,634 SNPs were detected with the SNP chip and RAD-seq, respectively. The genome-wide association study (GWAS) of the combined SNP panels identified two significant loci located at chr1: 97,745,041 and chr4: 112,031,589, that explained 6.36% and 4.25% of the phenotypic variance respectively. To reduce interval containing causal variants, we imputed sequence-level SNPs in the GWAS identified regions and fine-mapped the causative variants into two narrower genomic intervals: a ∼100 kb interval containing 71 SNPs and a broader ∼870 kb interval with 432 SNPs. This fine-mapping highlighted four promising candidate genes, SKOR2, SMAD2, VAV3, and NTNG1. Additionally, the functional genes, SLC25A24, PRMT6 and STXBP3, are also located near the fine-mapping region. These results suggest that these candidate genes may have contribute substantially to the birth weight of pigs.

12.
J Anim Sci ; 98(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32055823

RESUMO

Pig leg weakness not only causes huge economic losses for producers but also affects animal welfare. However, genes with large effects on pig leg weakness have not been identified and suitable methods to study porcine leg weakness are urgently needed. Bone mineral density (BMD) is an important indicator for determining leg soundness in pigs. Increasing pig BMD is likely to improve pig leg soundness. In this study, porcine BMD was measured using an ultrasound bone densitometer in a population with 212 Danish Landrace pigs and 537 Danish Yorkshires. After genotyping all the individuals using GeneSeek Porcine 50K SNP chip, genetic parameter estimation was performed to evaluate the heritability of BMD. Genome-wide association study and haplotype analysis were also performed to identify the variants and candidate genes associated with porcine BMD. The results showed that the heritability of BMD was 0.21 in Landrace and 0.31 in Yorkshire. Five single-nucleotide polymorphisms on chromosome 6 identified were associated with porcine BMD at suggestive significance level. Two candidate quantitative trait loci (74.47 to 75.33 Mb; 80.20 to 83.83 Mb) and three potential candidate genes (ZBTB40, CNR2, and Lin28a) of porcine BMD were detected in this study.


Assuntos
Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos/genética , Animais , Haplótipos , Polimorfismo de Nucleotídeo Único
13.
Commun Biol ; 3(1): 502, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913254

RESUMO

The analyses of multi-omics data have revealed candidate genes for objective traits. However, they are integrated poorly, especially in non-model organisms, and they pose a great challenge for prioritizing candidate genes for follow-up experimental verification. Here, we present a general convolutional neural network model that integrates multi-omics information to prioritize the candidate genes of objective traits. By applying this model to Sus scrofa, which is a non-model organism, but one of the most important livestock animals, the model precision was 72.9%, recall 73.5%, and F1-Measure 73.4%, demonstrating a good prediction performance compared with previous studies in Arabidopsis thaliana and Oryza sativa. Additionally, to facilitate the use of the model, we present ISwine ( http://iswine.iomics.pro/ ), which is an online comprehensive knowledgebase in which we incorporated almost all the published swine multi-omics data. Overall, the results suggest that the deep learning strategy will greatly facilitate analyses of multi-omics integration in the future.


Assuntos
Aprendizado Profundo , Genômica , Proteínas/genética , Transcriptoma/genética , Animais , Bases de Dados Genéticas , Redes Neurais de Computação , Proteínas/classificação , Suínos
14.
Front Genet ; 10: 189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923535

RESUMO

Genomic Selection (GS) has been proved to be a powerful tool for estimating genetic values in plant and livestock breeding. Newly developed sequencing technologies have dramatically reduced the cost of genotyping and significantly increased the scale of genotype data that used for GS. Meanwhile, state-of-the-art statistical methods were developed to make the best use of high marker density genotype data. In this study, 14 traits from four data sets of three species (maize, cattle, and pig) and five influential factors that affect the prediction accuracy were evaluated, including marker density (from 1 to ~600 k), statistical method (GBLUP-A, GBLUP-AD, and BayesR), minor allele frequency (MAF), heritability, and genetic architecture. Results indicate that in the GBLUP method, higher marker density leads to a higher prediction accuracy. In contrast, BayesR method needs more Monte Carlo Markov Chain (MCMC) iterations to reach the convergence and get reliable prediction values. BayesR outperforms GBLUP in predicting high or medium heritability trait that affected by one or several genes with large effects, while GBLUP performs similarly or slightly better than BayesR in predicting low heritability trait that controlled by a large amount of genes with minor effects. Prediction accuracy of trait with complex genetic architecture can be improved by increasing the marker density. Interestingly, for simple traits that controlled by one or several genes with large effects, higher marker density can cause a lower prediction accuracy if the QTN is included, but leads to a higher prediction accuracy if the QTN is excluded. The quantity of genetic markers with low MAF would not significantly affect the prediction accuracy of GBLUP, but results in a bad prediction accuracy performance of BayesR method. Compared with GBLUP-A, GBLUP-AD didn't show any advantages in capturing the non-additive variance for the traits with high heritability. The factors that affected prediction accuracy are discussed in this study and indicate that a combination of either GBLUP or BayesR method with moderate marker density and favorable polymorphism single nucleotide polymorphisms (SNPs) (~25 k SNPs) would always produce a good and stable prediction accuracy with acceptable breeding and computational costs.

15.
Front Genet ; 10: 302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024621

RESUMO

Improvement of the growth rate is a challenge in the pig industry, the Average Daily Gain (ADG) and Days (AGE) to 100 kg are directly related to growth performance. We performed genome-wide association study (GWAS) and genetic parameters estimation for ADG and AGE using the genomic and phonemic from four breed (Duroc, Yorkshire, Landrace, and Pietrain) populations. All analyses were performed by a multi-loci GWAS model, FarmCPU. The GWAS results of all four breeds indicate that five genome-wide significant SNPs were associated with ADG, and the nearby genomic regions explained 4.08% of the genetic variance and 1.90% of the phenotypic variance, respectively. For AGE, six genome-wide significant SNPs were detected, and the nearby genomic regions explained 8.09% of the genetic variance and 3.52% of phenotypic variance, respectively. In total, nine candidate genes were identified to be associated with growth and metabolism. Among them, TRIB3 was reported to associate with pig growth, GRP, TTR, CNR1, GLP1R, BRD2, HCRTR2, SEC11C, and ssc-mir-122 were reported to associate with growth traits in human and mouse. The newly detected candidate genes will advance the understanding of growth related traits and the identification of the novel variants will suggest a potential use in pig genomic breeding programs.

16.
Front Immunol ; 7: 295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532002

RESUMO

miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus) and humans (Homo sapiens). In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B). Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS) stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation, and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3' terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA