Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31621, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831842

RESUMO

Activated hepatic stellate cells (HSCs) have been widely recognized as a primary source of pathological myofibroblasts, leading to the accumulation of extracellular matrix and liver fibrosis. CD47, a transmembrane glycoprotein expressed on the surface of various cell types, has been implicated in non-alcoholic fatty liver disease. However, the precise role of CD47 in HSC activation and the underlying regulatory mechanisms governing CD47 expression remain poorly understood. In this study, we employed single-cell RNA sequencing analysis to investigate CD47 expression in HSCs from mice subjected to a high-fat diet. CD47 silencing in HSCs markedly inhibited the expression of fibrotic genes and promoted apoptosis. Mechanistically, we found that Yes-associated protein (YAP) collaborates with TEAD4 to augment the transcriptional activation of CD47 by binding to its promoter region. Notably, disruption of the interaction between YAP and TEAD4 caused a substantial decrease in CD47 expression in HSCs and reduced the development of high-fat diet-induced liver fibrosis. Our findings highlight CD47 as a critical transcriptional target of YAP in promoting HSC activation in response to a high-fat diet. Targeting the YAP/TEAD4/CD47 signaling axis may hold promise as a therapeutic strategy for liver fibrosis.

2.
Int Immunopharmacol ; 134: 112177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696908

RESUMO

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.


Assuntos
Adenosina Desaminase , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Ferroptose/genética , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Camundongos , RNA-Seq , Masculino , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
3.
Phytomedicine ; 135: 156106, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39366156

RESUMO

BACKGROUND: The hepatotoxicity induced by acetaminophen (APAP), a commonly used antipyretic, analgesic and anti-inflammatory drug in clinical practice, has received accumulated attention. Artemisia argyi essential oil (AAEO), a volatile oil component extracted from traditional Chinese medicine Artemisia argyi H.Lév. & Vaniot, has great hepatoprotective effects. However, the potential role of AAEO in APAP-induced hepatotoxicity has not been characterized. The present study aimed to investigate the effects of AAEO on hepatic metabolic changes in mice exposed to APAP. METHODS: In this study, 300.00 mg/kg acetaminophen was used to establish liver injury model in C57BL/6 J mice. Hepatoprotective effect of AAEO on APAP-induced hepatotoxicity in mice was investigated by detecting liver function enzymes and histopathological examination. Secondly, UPLC-MS/MS was used to analyze the to analyze the small molecule metabolites and metabolic pathways induced by AAEO treatment; In addition, the effect of AAEO on APAP-induced oxidative stress and inflammation were evaluated by detecting the levels of glutathione peroxidase 4, malondialdehyde, reactive oxygen species and inflammatory factors. Finally, the active components of AAEO were preliminarily screened by cellular assays. The hepatoprotective effect of AAEO against APAP-induced hepatotoxicity was examined through the Western blotting, after the CYP2E1 gene was knocked down in AML12 cells by siRNA transfection. RESULTS: Compared with the APAP group, AAEO could reduce the abnormal increase in the levels of liver function enzymes caused by APAP. AAEO could enhance the antioxidant capacity by down-regulating the biosynthesis pathway of unsaturated fatty acids and promoting the activity of antioxidant enzymes SOD and CAT in liver tissue induced by APAP. Our study revealed that AAEO promoted GSH synthesis and covalently combined to form APAP-GSH conjugates to reduce the accumulation of APAP in liver tissue. In addition, the chemical constituents in AAEO were analyzed by GC-MS/MS, and it was determined to identify that dihydro-beta-ionone and (-)-verbenone in AAEO might have a significant protective effect on hepatocyte survival after APAP exposure. Further studies on the hepatoprotective mechanism of AAEO indicated that it might reduce the production of toxic metabolites by regulating CYP2E1 levels. CONCLUSION: AAEO exerted hepatoprotective effects on acetaminophen-induced hepatotoxicity in mice via regulating the activity of CYP2E1 and regulating the γ-glutamyl cycle pathway.

4.
Animal Model Exp Med ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202925

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS: PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS: Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION: These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.

5.
Phytochemistry ; 199: 113177, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35358599

RESUMO

Phenolic acids are the major bioactive metabolites produced in Salvia miltiorrhiza, a traditional Chinese medicine called Danshen. Many phytohormone elicitor treatments induce phenolic acid biosynthesis, even though the underlying mechanism remains obscure. Expression pattern analysis showed that SmMAPK3 was highly expressed in leaves, and SmMAPK3 was significantly induced by salicylic acid (SA) and methyl jasmonate (JA). Bioinformatics analysis revealed that SmMAPK3 belongs to group A and contains a TEY motif in the activation loop together with three conserved regions (P-loop, C-loop and CD-domain). A previous study speculated that SmMAPK3 is likely a positive regulator in the biosynthesis of phenolic acids in S. miltiorrhiza. In this study, overexpression of SmMAPK3 increased phenolic acid biosynthetic gene expression and enhanced the accumulation of phenolic acids in S. miltiorrhiza plantlets. Yeast two-hybrid (Y2H) analysis and firefly luciferase complementation imaging (LCI) assays revealed that SmMAPKK2/4/5/7-SmMAPK3-SmJAZs form a cascade that regulates the accumulation of phenolic acids. In summary, this work deepens our understanding of the posttranscriptional regulatory mechanisms of phenolic acid biosynthesis and sheds new light on metabolic engineering in S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Abietanos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo
6.
J Comp Pathol ; 189: 88-97, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34886991

RESUMO

Characterized by steatosis, inflammation and fibrosis, non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder. As a major lipid droplet-binding protein, Plin5 has been reported to have multiple effects on metabolism, but the effect of Plin5 deficiency on NAFLD is unknown. Plin5 knockout mice and wild-type mice were used to investigate the role of Plin5 in the progression of NAFLD by feeding a high-fat diet (HFD) for 20 weeks. Plin5 deficiency improved obesity induced by the HFD and altered glucose tolerance. Histological examination revealed that Plin5 deficiency alleviated hepatic steatosis and fibrosis induced by the HFD. Plin5 deficiency was also associated with a significant change in lipid metabolism-associated molecules. Further studies of these molecules indicated that Plin5 deficiency activated the expression of AMP-activated protein kinase and inhibited the core regulator of lipogenesis, sterol regulatory element binding protein 1 and its downstream lipid synthesis-related genes. These findings suggest that Plin5 deficiency ameliorates NAFLD by regulating lipid metabolism and inhibiting lipogenesis, and may provide a new strategy for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Doenças dos Roedores , Animais , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/veterinária , Perilipina-5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA