Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8021): 531-536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020034

RESUMO

The pursuit of discovering new high-temperature superconductors that diverge from the copper-based model1-3 has profound implications for explaining mechanisms behind superconductivity and may also enable new applications4-8. Here our investigation shows that the application of pressure effectively suppresses the spin-charge order in trilayer nickelate La4Ni3O10-δ single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The d.c. susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a strange metal behaviour, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin-charge order, flat band structures, interlayer coupling, strange metal behaviour and high-temperature superconductivity.

2.
Nano Lett ; 24(3): 993-1000, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190333

RESUMO

Emergent phenomena in exfoliated layered transition metal compounds have attracted much attention in the past several years. Especially, pursuing a ferromagnetic insulator is one of the exciting goals for stimulating a high-performance magnetoelectrical device. Here, we report the transition from a metallic to high-Tc semiconductor-like ferromagnet in thinned Fe3GaTe2, accompanied with competition among various magnetic interactions. As evidenced by critical exponents, Fe3GaTe2 is the first layered ferromagnet described by a 3D Ising model coupled with long-range interactions. An extra magnetic phase from competition between ferromagnetism and antiferromagnetism emerges at a low field below Tc. Upon reducing thickness, the Curie temperature (Tc) monotonically decreases from 342 K for bulk to 200 K for 1-3 nm flakes, which is the highest Tc reported as far as we know. Furthermore, a semiconductor-like behavior has been observed in such 1-3 nm flakes. Our results highlight the importance of Fe3GaTe2 in searching for ferromagnetic insulators, which may benefit spintronic device fabrication.

3.
J Am Chem Soc ; 146(1): 281-288, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147585

RESUMO

Dielectrics with high, nonvolatile, and multiple polarizations are required for fabricating memcapacitors that enable high parallelism and low energy consumption in artificial neuromorphic computing systems as artificial synapses. Conventional ferroelectric materials based on displacive and order-disorder types generally have difficulty meeting these requirements due to their low polarization values (∼150 µC/cm2) and persistent electrical hysteresis loops. In this study, we report a novel organic-inorganic hybrid (CETM)2InCl5·H2O (CETM = (CH3)3(CH2CH2Cl)N) exhibiting an intriguing polarization vs electric field (charge vs voltage) "hysteresis loop" and a record-high nonvolatile polarization over 30 000 µC/cm2 at room temperature. The polarization is highly dependent on the period and amplitude of the ac voltage, showing multiple nonvolatile states. Electrochemical impedance spectroscopy, time-dependent current behavior, disparate resistor response in the dehydrated derivative (CETM)2InCl5, and the negative temperature dependence of ionic conductance support that the memcapacitor behavior of (CETM)2InCl5·H2O stems from irreversible long-range migration of protons. First-principles calculations further confirm this and clarify the microscale mechanism of anisotropic polarization response. Our findings may open up a new avenue for developing memcapacitors by harnessing the benefits of ion migration in organic-inorganic hybrids.

4.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593470

RESUMO

The quest for high-performance piezoelectric materials has been synonymous with the pursuit of the morphotropic phase boundary (MPB), yet the full potential of MPBs remains largely untapped outside of the realm of ferroelectrics. In this study, we reveal a new class of MPB by creating continuous molecular-based solid solutions between centro- and noncentrosymmetric compounds, exemplified by (tert-butylammonium)1-x(tert-amylammonium)xFeCl4 (0 ≤ x ≤ 1), where the MPB is formed due to disorder of molecular cations. Near the MPB, we discovered an exceptionally sensitive nonlinear optical material in the centrosymmetric phase, capable of activation at pressures as low as 0.12-0.27 GPa, and producing tunable second-harmonic generation (SHG) signals from zero to 18.8 times that of KH2PO4 (KDP). Meanwhile, synchrotron diffraction experiments have unveiled a third competing phase (P212121) appearing at low pressure, forming a triple-phase point near the MPB, thereby providing insight into the mechanism underpinning the nonlinear optical (NLO) switch behavior. These findings highlight the opportunity to harness exceptional physical properties in symmetry-breaking solid solution systems by strategically designing novel MPBs.

5.
J Am Chem Soc ; 145(31): 17435-17442, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524115

RESUMO

All two-dimensional (2D) materials of group IV elements from Si to Pb are stabilized by carrier doping and interface bonding from substrates except graphene which can be free-standing. The involvement of strong hybrid of bonds, adsorption of exotic atomic species, and the high concentration of crystalline defects are often unavoidable, complicating the measurement of the intrinsic properties. In this work, we report the discovery of seven kinds of hitherto unreported bulk compounds (RO)nPb (R = rare earth metals, n = 1,2), which consist of quasi-2D Pb square nets that are spatially and electronically detached from the [RO]δ+ blocking layers. The band structures of these compounds near Fermi levels are relatively clean and dominantly contributed by Pb, resembling the electron-doped free-standing Pb monolayer. The R2O2Pb compounds are metallic at ambient pressure and become superconductors under high pressures with much enhanced critical fields. In particular, Gd2O2Pb (9.1 µB/Gd) exhibits an interesting bulk response of lattice distortion in conjunction with the emergence of superconductivity and magnetic anomalies at a critical pressure of 10 GPa. Our findings reveal the unexpected facets of 2D Pb sheets that are considerably different from their bulk counterparts and provide an alternative route for exploring 2D properties in bulk materials.

6.
Angew Chem Int Ed Engl ; 62(10): e202216086, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573848

RESUMO

Searching for functional square lattices in layered superconductor systems offers an explicit clue to modify the electron behavior and find exotic properties. The trigonal SnAs3 structural units in SnAs-based systems are relatively conformable to distortion, which provides the possibility to achieve structurally topological transformation and higher superconducting transition temperatures. In the present work, the functional As square lattice was realized and activated in Li0.6 Sn2 As2 and NaSnAs through a topotactic structural transformation of trigonal SnAs3 to square SnAs4 under pressure, resulting in a record-high Tc among all synthesized SnAs-based compounds. Meanwhile, the conductive channel transfers from the out-of-plane pz orbital to the in-plane px +py orbitals, facilitating electron hopping within the square 2D lattice and boosting the superconductivity. The reorientation of p-orbital following a directed local structure transformation provides an effective strategy to modify layered superconducting systems.

7.
J Am Chem Soc ; 144(14): 6208-6214, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357829

RESUMO

Here, we report on a new kind of compound, XδIr4X12-δ (X = P, As), the first hole-doped skutterudites superconductor. We provide atomic-resolution images of the caging As atoms using scanning transmission electron microscopy (STEM). By inserting As atoms into the caged structure under a high pressure, superconductivity emerges with a maximum transition temperature (Tc) of 4.4 K (4.8 K) in IrAs3 (IrP3). In contrast to all of the electron-doped skutterudites, the electronic states around the Fermi level in XδIr4X12-δ are dominated by the caged X atom, which can be described by a simple body-centered tight-binding model, implying a distinct pairing mechanism. Our density functional theory (DFT) calculations reveal an intimate relationship between the pressure-dependent local-phonon mode and the enhancement of Tc. The discovery of XδIr4X12-δ provides an arena to investigate the uncharted territory of hole-doped skutterudites, and the method proposed here represents a new strategy of carrier doping in caged structures, without introducing extra elements.

8.
J Am Chem Soc ; 144(45): 20915-20922, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36302187

RESUMO

Superatomic crystals are a class of hierarchical materials composed of atomically precise clusters assembled via van der Waals or covalent-like interactions. Au6Te12Se8, an all-inorganic superatomic superconductor exhibiting superatomic-charge-density-wave (S-CDW), provides the first platform to study the response of its collective quantum phenomenon to the external pressure in superatomic crystals. We reveal a competition between S-CDW and superconductivity in an ultra-narrow pressure range. Distinct from conventional CDW ordering, S-CDW shows the lowest threshold (0.1 GPa) toward external pressure that is 1-2 orders of magnitude lower than other atomic compounds. Prominently, a second superconducting phase emerges above 7.3 GPa with a threefold enhancement in the transition temperature (Tc) to 8.5 K, indicating a switch of the conduction channel from the a- to b-axis. In situ synchrotron diffractions and theoretical calculations reveal a pressure-mediated mesoscopic slip of the superatoms and a 2D-3D transition of the Fermi surface topology, which well explains the observed dimensional crossover of conductivity and re-entrant superconductivity.

9.
J Am Chem Soc ; 143(18): 7042-7049, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33926192

RESUMO

The charge, spin, and composition degrees of freedom in a high-entropy alloy endow it with tunable valence and spin states, infinite combinations, and excellent mechanical performance. Meanwhile, the stacking, interlayer, and angle degrees of freedom in a van der Waals material bring to it exceptional features and technological applications. Integration of these two distinct material categories while keeping their merits would be tempting. On the basis of this heuristic thinking, we design and explore a new range of materials (i.e., dichalcogenides, halides, and phosphorus trisulfides) with multiple metallic constitutions and intrinsic layered structure, which are coined as high-entropy van der Waals materials. Millimeter-scale single crystals with a homogeneous element distribution can be efficiently acquired and easily exfoliated or intercalated in this materials category. Multifarious physical properties such as superconductivity, magnetic ordering, metal-insulator transition, and corrosion resistance have been exploited. Further research based on the concept of high-entropy van der Waals materials will enrich the high-throughput design of new systems with intriguing properties and practical applications.

10.
Phys Rev Lett ; 127(23): 237001, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936789

RESUMO

The recently discovered layered kagome metals AV_{3}Sb_{5} (A=K, Rb, and Cs) with vanadium kagome networks provide a novel platform to explore correlated quantum states intertwined with topological band structures. Here we report the prominent effect of hole doping on both superconductivity and charge density wave (CDW) order, achieved by selective oxidation of exfoliated thin flakes. A superconducting dome is revealed as a function of the effective doping content. The superconducting transition temperature (T_{c}) and upper critical field in thin flakes are significantly enhanced compared with the bulk, which are accompanied by the suppression of CDW. Our detailed analyses establish the pivotal role of van Hove singularities in promoting correlated quantum orders in these kagome metals. Our experiments not only demonstrate the intriguing nature of superconducting and CDW orders, but also provide a novel route to tune the carrier concentration through both selective oxidation and electric gating. This establishes CsV_{3}Sb_{5} as a tunable 2D platform for the further exploration of topology and correlation among 3d electrons in kagome lattices.

11.
J Am Chem Soc ; 141(13): 5326-5333, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856325

RESUMO

We report structural properties, physical properties, and the electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/ m to rhombohedral R3̅ at Ts ≈ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ≈ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion ( S = 1). Theoretical calculations suggest that VI3 may be a Mott insulator with a band gap of about 0.90 eV. In addition, VI3 has a relatively small interlayer binding energy and can be exfoliated easily down to a few layers experimentally. Therefore, VI3 is a candidate for two-dimensional FM semiconductors. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.

12.
J Am Chem Soc ; 141(35): 13849-13857, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31355639

RESUMO

The pairing of ions of opposite charge is a central principle of chemistry. Even though the ability to intercalate anions is desirable for many applications, it remains a key challenge for numerous host materials with their outmost layers beingn anions. In this work, we introduce a hydrothermal ion-exchange synthesis to intercalate oxidative S and Se anions between the Se layers of FeSe, which leads to single crystals of novel compounds (Se/S)x(NH3)yFe2Se2. In particular, the unusual anion-anion bonding between the intercalated S (or Se) and Se layers exhibits strong ionic characteristics. The charge transfer through the Se layer to S (or Se) intercalants is further confirmed by the elevated oxidation state of Fe ions and the dominant hole carriers in the intercalated compounds. By intercalating S, for the first time superconductivity emerged in hole-doped iron chalcogenides. The generality of this chemical approach was further demonstrated with layered FeS and NiSe. Our findings thus open an avenue to exploring diverse aspects of anionic intercalation in similar materials.

13.
Inorg Chem ; 58(4): 2770-2776, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681840

RESUMO

We report the crystal structure and physical properties of two Ni5As3-based compounds RE2Ni5As3O2 (RE = Ce, Sm). The former exhibits structural phase transition from tetragonal (space group I4/ mmm, 139) to orthorhombic (space group Immm, 71) symmetry at 230 K, while the latter undergoes a charge-density-wave-like structural distortion with abrupt change of Ni-As bond length. Both compounds show antiferromagnetic transitions due to RE3+ ions ordering at 4.4 and 3.4 K, accompanying with the large enhancement of Sommerfeld coefficients comparing to the nonmagnetic La analogue. Although the Cu substitution for Ni induces structural anomalies and suppression of structural transition like the behaviors in La/Pr/Nd analogues, the superconductivity is not observed in both Cu-doped RE2Ni5As3O2 (RE = Ce, Sm) above 0.25 K. Our structural refinements reveal that the lacking of superconductivity in RE2(Ni1- xCu x)5As3O2 might relate to the anomalous increase of As height, h1.

14.
Inorg Chem ; 57(7): 3798-3804, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29546755

RESUMO

In this work, we report the discovery of a new Ni-based quasi-one-dimensional selenide: Cs0.9Ni3.1Se3. This compound adopts the TlFe3Te3-type structure with space group P63/ m, which consists of infinite [Ni3Se3] chains with face-sharing Ni6 octahedra along the c direction. The lattice parameters are calculated as a = 9.26301(4) Å and c = 4.34272(2) Å, with the Ni-Ni distance in the ab plane as 2.582(3) Å, suggesting the formation of a Ni-Ni metallic bond in this compound. Interestingly, it has been found that Cs0.9Ni3.1Se3 is nonstoichiometric, which is different from the other TlFe3Te3-type phases reported so far. Structure refinement shows that the extra Ni atom in the structure may occupy the 2c site, together with Cs atoms. Cs0.9Ni3.1Se3 shows metallic behavior with monotonously decreased resistivity with temperatures from 300 to 0.5 K. Measurements on the magnetic susceptibility display a spin-glass state below 7 K. The specific heat curve gives a Sommerfeld coefficient of 14.6 mJ·K-2·mol-1 and a Debye temperature of 143.6 K. The discovery of this new compound enriches the diversity of low-dimensional materials in a transition-metal-based family and also sheds light on the structure-property relationship of this system.

15.
Inorg Chem ; 53(8): 4154-60, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702502

RESUMO

Two new layered oxyselenides, Ba2MO2Ag2Se2 (M = Co, Mn), have been successfully synthesized via solid-state reaction. It is found that these two compounds, consisting of the infinite MO2 square planes and antifluorite-type Ag2Se2 layers separated by barium, possess new structural features while keeping I4/mmm symmetry. A detailed calculation on the discrete coordination of transition metals by oxygen in the two compounds and Ba2ZnO2Ag2Se2 revealed quite different energy landscapes. The calculated results indicate that the manganese compound favors adoption of the I4/mmm space group, while the cobalt compound could be at the boundary of the transition between the I4/mmm and Cmca phases. In Ba2CoO2Ag2Se2, the coexistence of a large barium ion and a Ag2Se2 layer expands the oxide layer significantly and results in the largest Co-O bond length in the square-planar sheet ever reported. Ba2CoO2Ag2Se2 is near-stoichiometric, whereas Ba2MnO2Ag2Se2 contains 7% silver vacancies, which is explained by the mixed valence of the manganese ion between 2+ and 3+. In Ba2CoO2Ag2Se2, the zero-field-cooled and field-cooled susceptibilities bifurcate at 159 K, located between two antiferromagnetic (AFM) transitions. Meanwhile, Ba2MnO2Ag2Se2 shows high-temperature Curie-Weiss behavior, followed by a low-temperature AFM transition with TN = 32 K. They both exhibit semiconducting behavior with resisitivities of about 10(5)Ω cm at room temperature. The optical band gaps are determined to be 1.49 and 1.18 eV for Ba2CoO2Ag2Se2 and Ba2MnO2Ag2Se2, respectively. Band structure calculations reveal that Ba2CoO2Ag2Se2 is a direct-gap semiconductor, with a calculated band gap of 1.147 eV; however, Ba2MnO2Ag2Se2 failed to reproduce the semiconducting behavior within an A-type AFM model.

16.
Nat Commun ; 15(1): 475, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212605

RESUMO

Pressure can alter interatomic distances and its electrostatic interactions, exerting a profound modifying effect on electron orbitals and bonding patterns. Conventional pressure engineering relies on compressions from external sources, which raises significant challenge in precisely applying pressure on individual molecules and also consume substantial mechanical energy. Here we report ultrasmall single-layered NbSe2 flat tubes (< 2.31 nm) created by self-pressurization during the deselenization of NbSe3 within carbon nanotubes (CNTs). As the internal force (4-17 GPa) is three orders of magnitude larger than the shear strength between CNTs, the flat tube is locked to prevent slippage. Electrical transport measurements indicate that the large pressure within CNTs induces enhanced intermolecular electron correlations. The strictly one-dimensional NbSe2 flat tubes harboring the Luttinger liquid (LL) state, showing a higher tunneling exponent [Formula: see text] than pure CNTs ([Formula: see text]). This work suggests a novel chemical approach to self-pressurization for generating new material configurations and modulating electron interactions.

17.
Adv Mater ; 36(39): e2404772, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822811

RESUMO

While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform. Leveraging the multiple electron couplings and d-p orbital hybridizations induced by the cocktail effect, the exceptional oxygen evolution catalytic activity is disclosed upon van der Waals material (MnFeCoNiZn)PS3, exhibiting an impressively low overpotential of 240 mV at a current density of 10 mA cm-2, a minimal Tafel slope of 32 mV dec-1, and negligible degradation under varying current densities for over 96 h. Density functional theory calculations further offer insights into the correlation between orbital hybridization and catalytic performance within high-entropy systems, underscoring the contribution of active phosphorus centers on the substrate to performance enhancements. Moreover, by achieving electron redistribution to optimize the electron coordination environment, this work presents an effective strategy for advanced catalysts in energy-related applications.

18.
Nat Chem ; 16(11): 1803-1810, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39143300

RESUMO

Hydrogen bonds profoundly influence the fundamental chemical, physical and biological properties of molecules and materials. Owing to their relatively weaker interactions compared to other chemical bonds, hydrogen bonds alone are generally insufficient to induce substantial changes in electrical properties, thus imposing severe constraints on their applications in related devices. Here we report a metal-insulator transition controlled by hydrogen bonds for an organic-inorganic (1,3-diaminopropane)0.5SnSe2 superlattice that exhibits a colossal on-off ratio of 107 in electrical resistivity. The key to inducing the transition is a change in the amino group's hydrogen-bonding structure from dynamic to static. In the dynamic state, thermally activated free rotation continuously breaks and forms transient hydrogen bonds with adjacent Se anions. In the static state, the amino group forms three fixed-angle positions, each separated by 120°. Our findings contribute to the understanding of electrical phenomena in organic-inorganic hybrid materials and may be used for the design of future molecule-based electronic materials.

19.
Adv Mater ; 36(27): e2401118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641859

RESUMO

As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law free variables (F) = components (C) - phases (P) + 2. When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, the sharp phase boundary is expanded to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline-amorphous-crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in situ synchrotron diffraction, it is elucidated that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2- trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25% increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, a theoretical framework is proposed revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries.

20.
J Am Chem Soc ; 135(8): 2951-4, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23406203

RESUMO

The ubiquitous coexistence of majority insulating 245 phases and minority superconducting (SC) phases in A(x)Fe(2-y)Se(2) (A = K, Cs, Rb, Tl/Rb, Tl/K) formed by high-temperature routes makes pure SC phases highly desirable for studying the intrinsic properties of this SC family. Here we report that there are at least two pure SC phases, K(x)Fe(2)Se(2)(NH(3))(y) (x ≈ 0.3 and 0.6), determined mainly by potassium concentration in the K-intercalated iron selenides formed via the liquid ammonia route. K(0.3)Fe(2)Se(2)(NH(3))(0.47) corresponds to the 44 K phase with lattice constant c = 15.56(1) Å and K(0.6)Fe(2)Se(2)(NH(3))(0.37) to the 30 K phase with c = 14.84(1) Å. With higher potassium doping, the 44 K phase can be converted into the 30 K phase. NH(3) has little, if any, effect on superconductivity. Thus, the conclusions should apply to both K(0.3)Fe(2)Se(2) and K(0.6)Fe(2)Se(2) SC phases. K(0.3)Fe(2)Se(2)(NH(3))(0.47) and K(0.6)Fe(2)Se(2)(NH(3))(0.37) stand out among known superconductors as their structures are stable only at particular potassium doping levels, and hence the variation of T(c) with doping is not dome-like.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA