Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687867

RESUMO

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear. METHODS: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells. RESULTS: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1ß. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation. CONCLUSIONS: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.

2.
Clin Sci (Lond) ; 137(5): 317-331, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705251

RESUMO

Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked down-regulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared with wild-type control. Meg3 was also induced by lipopolysaccharide in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.


Assuntos
RNA Longo não Codificante , Insuficiência Renal Crônica , Animais , Camundongos , Citocinas/metabolismo , Fibrose , Inflamação/patologia , Insuficiência Renal Crônica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Nephrol Dial Transplant ; 38(10): 2232-2247, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36914214

RESUMO

BACKGROUND: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS: During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-ß/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS: Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Células Endoteliais/metabolismo , Fibrose , Hipóxia , Inflamação/patologia , Rim , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Trombina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
4.
Cell Mol Life Sci ; 78(19-20): 6721-6734, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34568976

RESUMO

Myeloid cells and TLR4 play a critical role in acute kidney injury. This study investigated the regulatory role and mechanisms of myeloid TLR4 in experimental anti-glomerular basement membrane (GBM) glomerulonephritis (GN). Anti-GBM GN was induced in tlr4flox/flox and tlr4flox/flox-lysM-cre mice by intravenous injection of the sheep anti-mouse GBM antibody. Compared to control mice, conditional disruption of tlr4 from myeloid cells, largely macrophages (> 85%), suppressed glomerular crescent formation and attenuated progressive renal injury by lowering serum creatinine and 24-h urine protein excretion while improving creatinine clearance. Mechanistically, deletion of myeloid tlr4 markedly inhibited renal infiltration of macrophages and T cells and resulted in a shift of infiltrating macrophages from F4/80+iNOS+ M1 to F4/80+CD206+ M2 phenotype and inhibited the upregulation of renal proinflammatory cytokines IL-1ß and MCP-1. Importantly, deletion of myeloid tlr4 suppressed T cell-mediated immune injury by shifting Th1 (CD4+IFNγ+) and Th17 (CD4+IL-17a+) to Treg (CD4+CD25+FoxP3+) immune responses. Transcriptome analysis also revealed that disrupted myeloid TLR4 largely downregulated genes involving immune and cytokine-related pathways. Thus, myeloid TLR4 plays a pivotal role in anti-GBM GN by immunological switching from M1 to M2 and from Th1/Th17 to Treg and targeting myeloid TLR4 may be a novel therapeutic strategy for immune-mediated kidney diseases.


Assuntos
Membrana Basal/metabolismo , Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Células Mieloides/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Feminino , Rim/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/metabolismo , Células Th17/metabolismo
5.
Clin Sci (Lond) ; 135(3): 429-446, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458750

RESUMO

Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/ß-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-ß and ß-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-ß-mediated fibroblast activation via modulation of Wnt4/ß-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/ß-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.


Assuntos
Insuficiência Renal Crônica/patologia , Serpinas/metabolismo , Obstrução Ureteral/patologia , Via de Sinalização Wnt , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Humanos , Rim/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
6.
Clin Sci (Lond) ; 134(21): 2873-2891, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33078834

RESUMO

Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-ß (TGF-ß)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-ß expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.


Assuntos
Rim/lesões , Lactonas/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Proteína Smad3/metabolismo , Trombina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
7.
Cell Commun Signal ; 18(1): 79, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450899

RESUMO

BACKGROUND: Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. METHODS: Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGF-ß1) ± apyrase, or ATPγS for 48 h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. Carboxyfluorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. RESULTS: Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGF-ß1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. CONCLUSION: Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD. Video Abstract In proximal tubular epithelial cells (PTECs), tight junction proteins, including zona occuludens-1 (ZO-1), contribute to epithelial integrity, whilst the adherens junction protein epithelial (E)-cadherin (ECAD) maintains cell-cell coupling, facilitating connexin 43 (Cx43) gap junction-mediated intercellular communication (GJIC) and the direct transfer of small molecules and ions between cells. In disease, such as diabetic nephropathy, the pro-fibrotic cytokine transforming growth factor beta1 (TGF-ß1) binds to its receptor and recruits SMAD2/3 signalling ahead of changes in gene transcription and up-regulation of Cx43-mediated hemichannels (HC). Uncoupled hemichannels permit the release of adenosine triphosphate (ATP) in to the extracellular space (↑[ATP]e), where ATP binds to the P2X7 purinoreceptor and activates the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome. Inflammation results in epithelial-to-mesenchymal transition (EMT), fibrosis and tubular injury. A major consequence is further loss of ECAD and reduced stickiness between cells, which can be functionally measured as a decrease in the maximum unbinding force needed to uncouple two adherent cells (Fmax). Loss of ECAD feeds forward to further lessen cell-cell coupling exacerbating the switch from GJIC to HC-mediated release of ATP. Reduction in ZO-1 impedes tight junction effectiveness and decreases trans-epithelial resistance (↓TER), resulting in increased paracellular permeability.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexina 43/fisiologia , Túbulos Renais , Insuficiência Renal Crônica/metabolismo , Animais , Adesão Celular , Linhagem Celular , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos , Pessoa de Meia-Idade
8.
Kidney Int ; 93(6): 1367-1383, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29605095

RESUMO

Imbalance of Wnt/ß-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/ß-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/ß-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized ß-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1ß, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/ß-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.


Assuntos
Mediadores da Inflamação/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Nefrite/metabolismo , Proteinúria/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia , Nefrite/genética , Nefrite/patologia , Nefrite/fisiopatologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Soroalbumina Bovina , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Via de Sinalização Wnt/genética , beta Catenina/genética
9.
Cell Physiol Biochem ; 45(6): 2369-2388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587265

RESUMO

BACKGROUND/AIMS: Changes in cell-to-cell communication have been linked to several secondary complications of diabetes, but the mechanism by which connexins affect disease progression in the kidney is poorly understood. This study examines a role for glucose-evoked changes in the beta1 isoform of transforming growth factor (TGFß1), on connexin expression, gap-junction mediated intercellular communication (GJIC) and hemi-channel ATP release from tubular epithelial cells of the proximal renal nephron. METHODS: Biopsy material from patients with and without diabetic nephropathy was stained for connexin-26 (CX26) and connexin-43 (CX43). Changes in expression were corroborated by immunoblot analysis in human primary proximal tubule epithelial cells (hPTECs) and model epithelial cells from human renal proximal tubules (HK2) cultured in either low glucose (5mmol/L) ± TGFß1 (2-10ng/ml) or high glucose (25mmol/L) for 48h or 7days. Secretion of the cytokine was determined by ELISA. Paired whole cell patch clamp recordings were used to measure junctional conductance in control versus TGFß1 treated (10ng/ml) HK2 cells, with carboxyfluorescein uptake and ATP-biosensing assessing hemi-channel function. A downstream role for ATP in mediating the effects of TGF-ß1 on connexin mediated cell communication was assessed by incubating cells with ATPγS (1-100µM) or TGF-ß1 +/- apyrase (5 Units/ml). Implications of ATP release were measured through immunoblot analysis of interleukin 6 (IL-6) and fibronectin expression. RESULTS: Biopsy material from patients with diabetic nephropathy exhibited increased tubular expression of CX26 and CX43 (P<0.01, n=10), data corroborated in HK2 and hPTEC cells cultured in TGFß1 (10ng/ml) for 7days (P<0.001, n=3). High glucose significantly increased TGFß1 secretion from tubular epithelial cells (P<0.001, n=3). The cytokine (10ng/ml) reduced junctional conductance between HK2 cells from 4.5±1.3nS in control to 1.15±0.9nS following 48h TGFß1 and to 0.42±0.2nS after 7days TGFß1 incubation (P<0.05, n=5). Acute (48h) and chronic (7day) challenge with TGFß1 produced a carbenoxolone (200µM)-sensitive increase in carboxyfluorescein loading, matched by an increase in ATP release from 0.29±0.06µM in control to 1.99±0.47µM after 48hr incubation with TGFß1 (10ng/ml; P<0.05, n=3). TGF-ß1 (2-10ng/ml) and ATPγs (1-100µM) increased expression of IL-6 (P<0.001 n=3) and fibronectin (P<0.01 n=3). The effect of TGF-ß1 on IL-6 and fibronectin expression was partially blunted when preincubated with apyrase (n=3). CONCLUSION: These data suggest that chronic exposure to glucose-evoked TGFß1 induce an increase in CX26 and CX43 expression, consistent with changes observed in tubular epithelia from patients with diabetic nephropathy. Despite increased connexin expression, direct GJIC communication decreases, whilst hemichannel expression/function and paracrine release of ATP increases, changes that trigger increased levels of expression of interleukin 6 and fibronectin. Linked to inflammation and fibrosis, local increases in purinergic signals may exacerbate disease progression and highlight connexin mediated cell communication as a future therapeutic target for diabetic nephropathy.


Assuntos
Comunicação Celular , Conexina 26/análise , Conexina 43/análise , Nefropatias Diabéticas/patologia , Túbulos Renais Proximais/patologia , Fator de Crescimento Transformador beta1/análise , Linhagem Celular , Células Cultivadas , Conexina 26/metabolismo , Conexina 43/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
10.
Nephrol Dial Transplant ; 33(8): 1323-1332, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294056

RESUMO

Background: Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis. Methods: Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components. Renal function and tubulointerstitial injury were compared between db/m mice, vehicle-treated mice and C5a inhibitor-treated db/db mice. A cell culture model of tubule epithelial cells (HK-2) was used to demonstrate the effect of C5a on the renal fibrotic pathway. Results: Increased levels of C5a, but not of its receptor C5aR, were detected in renal tubules from patients with DN. The intensity of C5a staining was positively correlated with the progression of the disease. In db/db mice, administration of a novel C5a inhibitor, NOX-D21, reduced the serum triglyceride level and attenuated the upregulation of diacylglycerolacyltransferase-1 and sterol-regulatory element binding protein-1 expression and lipid accumulation in diabetic kidney. NOX-D21-treated diabetic mice also had reduced serum blood urea nitrogen and creatinine levels with less glomerular and tubulointerstitial damage. Renal transforming growth factor beta 1 (TGF-ß1), fibronectin and collagen type I expressions were reduced by NOX-D21. In HK-2 cells, C5a stimulated TGF-ß production through the activation of the PI3K/Akt signalling pathway. Conclusions: Blockade of C5a signalling by NOX-D21 moderates altered lipid metabolism in diabetes and improved tubulointerstitial fibrosis by reduction of lipid accumulation and TGF-ß-driven fibrosis in diabetic kidney.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Complemento C5a/antagonistas & inibidores , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/complicações , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Fibrose/etiologia , Fibrose/metabolismo , Humanos , Nefropatias/etiologia , Nefropatias/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Serina Endopeptidases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
11.
Nephrology (Carlton) ; 23(4): 297-307, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28075040

RESUMO

AIM: Angiotensin-converting enzyme inhibitors (ACEi) are widely used to deter the progression of chronic kidney disease (CKD). Besides controlling hypertension and reduction of intra-glomerular pressure, ACEi appear to have anti-fibrotic effects in the renal cortex. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), an endogenous tetrapeptide that is degraded by ACE, has also been shown to ameliorate the pro-fibrotic phenotype displayed in CKD in our recent study. Whether the anti-fibrotic properties of ACEi are mediated by Ac-SDKP has not been fully investigated. METHODS: To delineate the role of Ac-SDKP in ACE blockade, 12-week-old male BALB/c mice underwent sham operation or unilateral ureteric obstruction (UUO). UUO mice were subjected to: (i) vehicle; (ii) captopril or (iii) captopril in conjunction with S17092, a prolyl oligopeptidase inhibitor. After 7 days, mice were sacrificed and kidneys harvested for analyses. RESULTS: After UUO, there were heightened expressions of collagen I, collagen III, fibronectin and α-SMA associated with significant levels of tubulointerstitial injury on histological examination. Furthermore, p44/42 mitogen-activated protein kinase (MAPK) and transforming growth factor beta 1(TGF-ß1) signalling were upregulated. These were significantly ameliorated by captopril treatment alone but unaffected by co-administration of captopril with S17092. Captopril treatment had resulted in elevated urinary Ac-SDKP levels, an effect that was eliminated by the co-administration with S17092. CONCLUSION: This study allowed the investigation of the renoprotective property of ACEi in the absence of Ac-SDKP and proved conclusively that Ac-SDKP is the prime anti-fibrotic mediator of captopril, acting via p44/42 MAPK and TGF-ß1 signalling pathways. Future research to expand CKD armamentarium should explore the utility of augmenting Ac-SDKP levels.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Captopril/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Oligopeptídeos/metabolismo , Obstrução Ureteral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Indóis/farmacologia , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peptidil Dipeptidase A/metabolismo , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase , Transdução de Sinais/efeitos dos fármacos , Tiazolidinas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
12.
Kidney Int ; 89(2): 386-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26536000

RESUMO

Kallistatin is a serine protease inhibitor with anti-inflammatory, anti-angiogenic, and anti-oxidative properties. Since oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy, we studied the effect and mechanisms of action of kallistatin superinduction. Using ultrasound-microbubble-mediated gene transfer, kallistatin overexpression was induced in kidney tubules. In db/db mice, kallistatin overexpression reduced serum creatinine and BUN levels, ameliorated glomerulosclerosis and tubulointerstitial injury, and attenuated renal fibrosis by inhibiting TGF-ß signaling. Additionally, downstream PAI-1 and collagens I and IV expression were reduced and kallistatin partially suppressed renal inflammation by inhibiting NF-κB signaling and decreasing tissue kallikrein activity. Kallistatin lowered blood pressure and attenuated oxidative stress as evidenced by suppressed levels of NADPH oxidase 4, and oxidative markers (nitrotyrosine, 8-hydroxydeoxyguanosine, and malondialdehyde) in diabetic renal tissue. Kallistatin also inhibited RAGE expression in the diabetic kidney and AGE-stimulated cultured proximal tubular cells. Reduced AGE-induced reactive oxygen species generation reflected an anti-oxidative mechanism via the AGE-RAGE-reactive oxygen species axis. These results indicate a renoprotective role of kallistatin against diabetic nephropathy by multiple mechanisms including suppression of oxidative stress, anti-fibrotic and anti-inflammatory actions, and blood pressure lowering.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Terapia Genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serpinas/fisiologia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Técnicas de Transferência de Genes , Calicreínas/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Clin Sci (Lond) ; 128(4): 269-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25200314

RESUMO

Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels. Moreover, BMP7 suppressed AGE-induced p38 and p44/42 MAPK phosphorylation and reactive oxygen species production in PTECs. Compared with vehicle control, uninephrectomized db/db mice treated with BMP7 for 8 weeks had significantly lower urinary albumin-to-creatinine ratio (3549±816.2 µg/mg compared with 8612±2037 µg/mg, P=0.036), blood urea nitrogen (33.26±1.09 mg/dl compared with 37.49±0.89 mg/dl, P=0.006), and renal cortical expression of ICAM1 and MCP1 at both gene and protein levels. In addition, BMP7-treated animals had significantly less severe tubular damage, interstitial inflammatory cell infiltration, renal cortical p38 and p44/42 phosphorylation and lipid peroxidation. Our results demonstrate that BMP7 attenuates tubular pro-inflammatory responses in diabetic kidney disease by suppressing oxidative stress and multiple inflammatory signalling pathways including p38 and p44/42 MAPK. Its potential application as a therapeutic molecule in diabetic nephropathy warrants further investigation.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Testes de Função Renal , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Mediators Inflamm ; 2015: 283123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26508815

RESUMO

To expand the armamentarium of treatment for chronic kidney disease (CKD), we explored the utility of boosting endogenously synthesized N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is augmented by inhibition of the angiotensin converting enzyme. Male BALB/c mice underwent unilateral ureteral ligation (UUO) or sham operation and received exogenously administered Ac-SDKP delivered via a subcutaneous osmotic minipump or Captopril treatment by oral gavage. Seven days after UUO, there were significant reductions in the expression of both collagen 1 and collagen 3 in kidneys treated with Ac-SDKP or Captopril, and there was a trend towards reductions in collagen IV, α-SMA, and MCP-1 versus control. However, no significant attenuation of interstitial injury or macrophage infiltration was observed. These findings are in contrary to observations in other models and underscore the fact that a longer treatment time frame may be required to yield anti-inflammatory effects in BALB/c mice treated with Ac-SDKP compared to untreated mice. Finding an effective treatment regimen for CKD requires fine-tuning of pharmacologic protocols.


Assuntos
Fibrose/tratamento farmacológico , Nefropatias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Obstrução Ureteral/tratamento farmacológico , Actinas/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Captopril/química , Quimiocina CCL2/metabolismo , Colágeno Tipo IV/metabolismo , Imuno-Histoquímica , Inflamação , Linfócitos/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
J Ren Nutr ; 25(2): 230-3, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578352

RESUMO

Diabetic nephropathy (DN) is a major cause of uremia in developed societies. Inflammation is emerging as an important mechanism for its pathogenesis and progression. Herein, we review 4 recently described cellular receptors that have been shown to mediate diabetic interstitial kidney disease. Peroxisome proliferator-activated receptor-γ attenuates STAT-1 activation and has shown promise in renoprotection. Its clinical utility is limited mainly by fluid retention through upregulation of sodium-hydrogen exchanger-3 and aquaporin-1 channels in the proximal tubule. The bradykinin receptor 2 of the kallikrein-kinin system has been shown to mediate diabetic kidney injury and its blockade conferred renoprotective effects in animal models of DN. The related protease-activated receptor, especially receptor 4, has recently been shown to participate in DN. Further studies are required to confirm its role. Finally, the toll-like receptor, especially TLR4 and TLR2, has been verified in multiple models to be a significant sensor of and reactor to hyperglycemia and other diabetic substrates that orchestrate interstitial inflammation in DN.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Animais , Nefropatias Diabéticas/complicações , Humanos , Inflamação/complicações , Inflamação/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Ratos , Receptores Ativados por Proteinase/fisiologia , Receptores Toll-Like/fisiologia
16.
Immunol Cell Biol ; 92(5): 427-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24418819

RESUMO

Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Quimiocinas/biossíntese , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Cultivadas , Quimiocinas/genética , Regulação da Expressão Gênica , Humanos , Espaço Intracelular , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais , Quinase Induzida por NF-kappaB
17.
Phytomedicine ; 130: 155457, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810556

RESUMO

BACKGROUND: Diabetes leads to chronic kidney disease (CKD) and kidney failure, requiring dialysis or transplantation. Astragalus, a common herbal medicine and US pharmacopeia-registered food ingredient, is shown kidney protective by retrospective and preclinical data but with limited long-term prospective clinical evidence. This trial aimed to assess the effectiveness of astragalus on kidney function decline in macroalbuminuric diabetic CKD patients. METHODS: This randomized, assessor-blind, standard care-controlled, multi-center clinical trial randomly assigned 118 patients with estimated glomerular filtration rate (eGFR) of 30-90 ml/min/1.73m2 and urinary albumin-to-creatinine ratio (UACR) of 300-5000 mg/g from 7 public outpatient clinics and the community in Hong Kong between July 2018 and April 2022 to add-on oral astragalus granules (15 gs of raw herbs daily equivalent) or to continue standard care alone as control for 48 weeks. Primary outcomes were the slope of change of eGFR (used for sample size calculation) and UACR of the intention-to-treat population. Secondary outcomes included endpoint blood pressures, biochemistry, biomarkers, concomitant drug change and adverse events. (ClinicalTrials.gov: NCT03535935) RESULTS: During the 48-week period, the estimated difference in the slope of eGFR decline was 4.6 ml/min/1.73m2 per year (95 %CI: 1.5 to 7.6, p = 0.003) slower with astragalus. For UACR, the estimated inter-group proportional difference in the slope of change was insignificant (1.14, 95 %CI: 0.85 to 1.52, p = 0.392). 117 adverse events from 31 astragalus-treated patients and 41 standard care-controlled patients were documented. The 48-week endpoint systolic blood pressure was 7.9 mmHg lower (95 %CI: -12.9 to -2.8, p = 0.003) in the astragalus-treated patients. 113 (96 %) and 107 (91 %) patients had post-randomization and endpoint primary outcome measures, respectively. CONCLUSION: In patients with type 2 diabetes, stage 2 to 3 CKD and macroalbuminuria, add-on astragalus for 48 weeks further stabilized kidney function on top of standard care.


Assuntos
Astrágalo , Diabetes Mellitus Tipo 2 , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Taxa de Filtração Glomerular/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Idoso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Astrágalo/química , Nefropatias Diabéticas/tratamento farmacológico , Fitoterapia , Albuminúria/tratamento farmacológico , Creatinina/urina , Creatinina/sangue , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hong Kong
18.
Kidney Int ; 83(5): 887-900, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423259

RESUMO

We recently showed that Toll-like receptor (TLR) TLR4 was overexpressed in the human diabetic kidney, which could promote tubular inflammation. Here we explored whether the TLR4 antagonist, CRX-526, has therapeutic potential to attenuate renal injuries and slow the progression of advanced diabetic nephropathy in wild-type and endothelial nitric oxide synthase (eNOS) knockout mice. In the latter, the endogenous TLR4 ligand, high-mobility group box 1, was upregulated more than in wild-type animals. Four weeks after streptozotocin induction of diabetes, mice were injected with either CRX-526 or vehicle for 8 weeks. CRX-526 significantly reduced albuminuria and blood urea nitrogen without altering blood glucose and systolic blood pressure in diabetic mice. Glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial injury were attenuated by CRX-526, which was associated with decreased chemokine (C-C motif) ligand (CCL)-2, osteopontin, CCL-5 overexpression, subsequent macrophage infiltration, and collagen deposition. These effects were associated with inhibition of TGF-ß overexpression and NF-κB activation. In vitro, CRX-526 inhibited high glucose-induced osteopontin upregulation and NF-κB nuclear translocation in cultured human proximal tubular epithelial cells. Thus, we provided evidence that inhibition of TLR4 with the synthetic antagonist CRX-526 conferred renoprotective effects in eNOS knockout diabetic mice with advanced diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Glucosamina/análogos & derivados , Rim/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Albuminúria/etiologia , Albuminúria/imunologia , Albuminúria/prevenção & controle , Animais , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/patologia , Progressão da Doença , Glucosamina/farmacologia , Proteína HMGB1/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Osteopontina/metabolismo , Estreptozocina , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
J Am Soc Nephrol ; 23(1): 86-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22021706

RESUMO

Inflammation contributes to the tubulointerstitial lesions of diabetic nephropathy. Toll-like receptors (TLRs) modulate immune responses and inflammatory diseases, but their role in diabetic nephropathy is not well understood. In this study, we found increased expression of TLR4 but not of TLR2 in the renal tubules of human kidneys with diabetic nephropathy compared with expression of TLR4 and TLR2 in normal kidney and in kidney disease from other causes. The intensity of tubular TLR4 expression correlated directly with interstitial macrophage infiltration and hemoglobin A1c level and inversely with estimated glomerular filtration rate. The tubules also upregulated the endogenous TLR4 ligand high-mobility group box 1 in diabetic nephropathy. In vitro, high glucose induced TLR4 expression via protein kinase C activation in a time- and dose-dependent manner, resulting in upregulation of IL-6 and chemokine (C-C motif) ligand 2 (CCL-2) expression via IκB/NF-κB activation in human proximal tubular epithelial cells. Silencing of TLR4 with small interfering RNA attenuated high glucose-induced IκB/NF-κB activation, inhibited the downstream synthesis of IL-6 and CCL-2, and impaired the ability of conditioned media from high glucose-treated proximal tubule cells to induce transmigration of mononuclear cells. We observed similar effects using a TLR4-neutralizing antibody. Finally, streptozotocin-induced diabetic and uninephrectomized TLR4-deficient mice had significantly less albuminuria, renal dysfunction, renal cortical NF-κB activation, tubular CCL-2 expression, and interstitial macrophage infiltration than wild-type animals. Taken together, these data suggest that a TLR4-mediated pathway may promote tubulointerstitial inflammation in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Córtex Renal/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Estudos de Casos e Controles , Células Cultivadas , Quimiotaxia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/imunologia , Glucose , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/fisiologia , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Receptor 4 Toll-Like/genética , Regulação para Cima
20.
Front Cell Dev Biol ; 11: 1056964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910160

RESUMO

Fibrotic signaling plays a pivotal role in the development and progression of solid cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and pseudo-capsule (PC) fibrosis are significantly correlated to the disease progression of renal cell carcinoma. Targeting classic fibrotic signaling processes such as TGF-ß signaling and epithelial-to-mesenchymal transition (EMT) shows promising antitumor effects both preclinically and clinically. Therefore, a better understanding of the pathogenic mechanisms of fibrotic signaling in renal cell carcinoma at molecular resolution can facilitate the development of precision therapies against solid cancers. In this review, we systematically summarized the latest updates on fibrotic signaling, from clinical correlation and molecular mechanisms to its therapeutic strategies for renal cell carcinoma. Importantly, we examined the reported fibrotic signaling on the human renal cell carcinoma dataset at the transcriptome level with single-cell resolution to assess its translational potential in the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA