Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 788-801, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270800

RESUMO

Composition and functioning of arctic soil fungal communities may alter rapidly due to the ongoing trends of warmer temperatures, shifts in nutrient availability, and shrub encroachment. In addition, the communities may also be intrinsically shaped by heavy grazing, which may locally induce an ecosystem change that couples with increased soil temperature and nutrients and where shrub encroachment is less likely to occur than in lightly grazed conditions. We tested how 4 yr of experimental warming and fertilization affected organic soil fungal communities in sites with decadal history of either heavy or light reindeer grazing using high-throughput sequencing of the internal transcribed spacer 2 ribosomal DNA region. Grazing history largely overrode the impacts of short-term warming and fertilization in determining the composition of fungal communities. The less diverse fungal communities under light grazing showed more pronounced responses to experimental treatments when compared with the communities under heavy grazing. Yet, ordination approaches revealed distinct treatment responses under both grazing intensities. If grazing shifts the fungal communities in Arctic ecosystems to a different and more diverse state, this shift may dictate ecosystem responses to further abiotic changes. This indicates that the intensity of grazing cannot be left out when predicting future changes in fungi-driven processes in the tundra.


Assuntos
Micobioma , Rena , Animais , Regiões Árticas , Ecossistema , Fertilização , Solo , Microbiologia do Solo , Tundra
2.
Glob Chang Biol ; 27(18): 4254-4268, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028938

RESUMO

The climate-driven encroachment of shrubs into the Arctic is accompanied by shifts in soil fungal communities that could contribute to a net release of carbon from tundra soils. At the same time, arctic grazers are known to prevent the establishment of deciduous shrubs and, under certain conditions, promote the dominance of evergreen shrubs. As these different vegetation types associate with contrasting fungal communities, the belowground consequences of climate change could vary among grazing regimes. Yet, at present, the impact of grazing on soil fungal communities and their links to soil carbon have remained speculative. Here we tested how soil fungal community composition, diversity and function depend on tree vicinity and long-term reindeer grazing regime and assessed how the fungal communities relate to organic soil carbon stocks in an alpine treeline ecotone in Northern Scandinavia. We determined soil carbon stocks and characterized soil fungal communities directly underneath and >3 m away from mountain birches (Betula pubescens ssp. czerepanovii) in two adjacent 55-year-old grazing regimes with or without summer grazing by reindeer (Rangifer tarandus). We show that the area exposed to year-round grazing dominated by evergreen dwarf shrubs had higher soil C:N ratio, higher fungal abundance and lower fungal diversity compared with the area with only winter grazing and higher abundance of mountain birch. Although soil carbon stocks did not differ between the grazing regimes, stocks were positively associated with root-associated ascomycetes, typical to the year-round grazing regime, and negatively associated with free-living saprotrophs, typical to the winter grazing regime. These findings suggest that when grazers promote dominance of evergreen dwarf shrubs, they induce shifts in soil fungal communities that increase soil carbon sequestration in the long term. Thus, to predict climate-driven changes in soil carbon, grazer-induced shifts in vegetation and soil fungal communities need to be accounted for.


Assuntos
Micobioma , Rena , Animais , Carbono , Solo , Tundra
3.
Glob Chang Biol ; 21(10): 3696-711, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25950664

RESUMO

Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.


Assuntos
Biodiversidade , Biomassa , Ciclo do Carbono , Aquecimento Global , Herbivoria , Magnoliopsida/fisiologia , Finlândia , Tundra
4.
Sci Total Environ ; 933: 173049, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735321

RESUMO

Arctic and subarctic ecosystems are experiencing rapid changes in vegetation composition and productivity due to global warming. Tundra wetlands are especially susceptible to these changes, which may trigger shifts in soil moisture dynamics. It is therefore essential to accurately map plant biomass and topsoil moisture. In this study, we mapped total, wood, and leaf above ground biomass and topsoil moisture in subarctic tundra wetlands located between Norway and Finland by linking models derived from Unoccupied Aerial Vehicles with multiple satellite data sources using the Extreme Gradient Boosting algorithm. The most accurate predictions for topsoil moisture (R2 = 0.73) used a set of red edge-based vegetation indices with a spatial resolution of 20 m per pixel. On the contrary, wood biomass showed the lowest accuracies across all tested models (R2 = 0.38). We found a trade-off between the spatial resolution and the performance of upscaling models, where smaller pixel sizes generally led to lower accuracies. However, we were able to compensate for reduced accuracy at smaller pixel sizes using Copernicus phenology metrics. A modelling uncertainty assessment revealed that the uncertainty of predictions increased with decreasing pixel sizes and increasing number of co-predictors. Our approach could improve efforts to map and monitor changes in vegetation at regional to pan-Arctic scales.


Assuntos
Biomassa , Monitoramento Ambiental , Solo , Monitoramento Ambiental/métodos , Solo/química , Finlândia , Noruega , Áreas Alagadas , Tundra , Regiões Árticas , Tecnologia de Sensoriamento Remoto
5.
Sci Data ; 11(1): 305, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509110

RESUMO

Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m-2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.


Assuntos
Ecossistema , Plantas , Árvores , Regiões Árticas , Biomassa
6.
Sci Total Environ ; 858(Pt 2): 159809, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336039

RESUMO

Peatland ecosystems emit biogenic volatile organic compounds (BVOC), which have a net cooling impact on the climate. However, the quality and quantity of BVOC emissions, and how they are regulated by vegetation and peatland type remain poorly understood. Here we measured BVOC emissions with dynamic enclosures from two major boreal peatland types, a minerotrophic fen and an ombrotrophic bog situated in Siikaneva, southern Finland and experimentally assessed the role of vegetation by removing vascular vegetation with or without the moss layer. Our measurements from four campaigns during growing seasons in 2017 and 2018 identified emissions of 59 compounds from nine different chemical groups. Isoprene accounted for 81 % of BVOC emissions. Measurements also revealed uptake of dichloromethane. Total BVOC emissions and the emissions of isoprene, monoterpenoids, sesquiterpenes, homoterpenes, and green leaf volatiles were tightly connected to vascular plants. Isoprene and sesquiterpene emissions were associated with sedges, whereas monoterpenoids and homoterpenes were associated with shrubs. Additionally, isoprene and alkane emissions were higher in the fen than in the bog and they significantly contributed to the higher BVOC emissions from intact vegetation in the fen. During an extreme drought event in 2018, emissions of organic halides were absent. Our results indicate that climate change with an increase in shrub cover and increased frequency of extreme weather events may have a negative impact on total BVOC emissions that otherwise are predicted to increase in warmer temperatures. However, these changes also accompanied a change in BVOC emission quality. As different compounds differ in their capacity to form secondary organic aerosols, the ultimate climate impact of peatland BVOC emissions may be altered.


Assuntos
Compostos Orgânicos Voláteis , Ecossistema , Áreas Alagadas , Monoterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA