Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(3): 1531-1550, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35051998

RESUMO

DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.


Assuntos
Metilases de Modificação do DNA , Epigenômica , DNA/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Metiltransferases/genética , Células Procarióticas/metabolismo
2.
Environ Microbiol ; 21(10): 3873-3884, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31298776

RESUMO

Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half-life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half-life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half-live times shorter than 10 min. Significant differences were found in the half-life time between mRNA and rRNA. The half-life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half-life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half-life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half-life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.


Assuntos
Bactérias/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Meia-Vida , RNA Ribossômico/genética , Transcriptoma/genética
3.
Microb Ecol ; 78(1): 1-5, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30448922

RESUMO

In the marine environment, the abundance of Bacteria and Archaea is either controlled bottom-up via nutrient availability or top-down via grazing. Heterotrophic nanoflagellates (HNF) are mainly responsible for prokaryotic grazing losses besides viral lysis. However, the grazing specificity of HNF on specific bacterial and archaeal taxa is under debate. Bacteria and Archaea might have different nutritive values and surface properties affecting the growth rates of HNF. In this study, we offered different bacterial and archaeal strains with different morphologic and physiologic characteristics to Cafeteria roenbergensis, one of the most abundant and ubiquitous species of HNF in the ocean. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains, and two fast growing marine Bacteria (Pseudoalteromonas sp. and Marinobacter sp.) were fed to Cafeteria cultures. Cafeteria roenbergensis exhibited high growth rates when feeding on Pseudoalteromonas sp., Marinobacter sp., and Nitrosopumilus adriaticus, while the addition of the other strains resulted in minimal growth. Taken together, our data suggest that the differences in growth of Cafeteria roenbergensis associated to grazing on different thaumarchaeal and bacterial strains are likely due to the subtle metabolic, cell size, and physiological differences between different bacterial and thaumarchaeal taxa. Moreover, Nitrosopumilus adriaticus experienced a similar grazing pressure by Cafeteria roenbergensis as compared to the other strains, suggesting that other HNF may also prey on Archaea which might have important consequences on the global biogeochemical cycles.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Estramenópilas/fisiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Comportamento Alimentar , Cadeia Alimentar , Processos Heterotróficos , Água do Mar/microbiologia , Água do Mar/parasitologia , Estramenópilas/classificação , Estramenópilas/crescimento & desenvolvimento
4.
Environ Microbiol ; 20(2): 492-505, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967193

RESUMO

Zooplankton and microbes play a key role in the ocean's biological cycles by releasing and consuming copious amounts of particulate and dissolved organic matter. Additionally, zooplankton provide a complex microhabitat rich in organic and inorganic nutrients in which bacteria thrive. In this study, we assessed the phylogenetic composition and metabolic potential of microbial communities associated with crustacean zooplankton species collected in the North Atlantic. Using Illumina sequencing of the 16S rRNA gene, we found significant differences between the microbial communities associated with zooplankton and those inhabiting the surrounding seawater. Metagenomic analysis of the zooplankton-associated microbial community revealed a highly specialized bacterial community able to exploit zooplankton as microhabitat and thus, mediating biogeochemical processes generally underrepresented in the open ocean. The zooplankton-associated bacterial community is able to colonize the zooplankton's internal and external surfaces using a large set of adhesion mechanisms and to metabolize complex organic compounds released or exuded by the zooplankton such as chitin, taurine and other complex molecules. Moreover, the high number of genes involved in iron and phosphorus metabolisms in the zooplankton-associated microbiome suggests that this zooplankton-associated bacterial community mediates specific biogeochemical processes (through the proliferation of specific taxa) that are generally underrepresented in the ambient waters.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Metagenoma , Zooplâncton/microbiologia , Animais , Oceano Atlântico , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
5.
Proc Biol Sci ; 281(1776): 20132498, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24352945

RESUMO

Ecosystems have a limited buffering capacity of multiple ecosystem functions against biodiversity loss (i.e. low multifunctional redundancy). We developed a novel theoretical approach to evaluate multifunctional redundancy in a microbial community using the microbial genome database (MBGD) for comparative analysis. In order to fully implement functional information, we defined orthologue richness in a community, each of which is a functionally conservative evolutionary unit in genomes, as an index of community multifunctionality (MF). We constructed a graph of expected orthologue richness in a community (MF) as a function of species richness (SR), fit the power function to SR (i.e. MF = cSR(a)), and interpreted the higher exponent a as the lower multifunctional redundancy. Through a microcosm experiment, we confirmed that MF defined by orthologue richness could predict the actual multiple functions. We simulated random and non-random community assemblages using full genomic data of 478 prokaryotic species in the MBGD, and determined that the exponent in microbial communities ranged from 0.55 to 0.75. This exponent range provided a quantitative estimate that a 6.6-8.9% loss limit in SR occurred in a microbial community for an MF reduction no greater than 5%, suggesting a non-negligible initial loss effect of microbial diversity on MF.


Assuntos
Biodiversidade , Microbiota/genética , Modelos Biológicos , Simulação por Computador , Microbiota/fisiologia , Especificidade da Espécie
6.
Environ Microbiol ; 15(5): 1647-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22690844

RESUMO

Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≈ 8000 times and 15 times more abundant in the coastal Arctic and the top 300 m layer of the open equatorial Atlantic, respectively, than the LAC-AOA (low ammonia concentration AOA) ecotype. In contrast, the LAC-AOA ecotype dominated the lower meso- and bathypelagic waters of the tropical Atlantic (≈ 50 times more abundant than the HAC-AOA) where ammonia concentrations are well below the detection limit using conventional spectrophotometric or fluorometric methods. Cluster analysis of the sequences from the clone libraries obtained by the two amoA primer sets revealed two phylogenetically distinct clusters. Taken together, our results suggest the presence of two ecotypes of archaeal ammonia oxidizers corresponding to the medium (1.24 µM on average in the coastal Arctic) and low ammonia concentration (< 0.01 µM) in the shallow and the deep waters respectively.


Assuntos
Crenarchaeota/classificação , Crenarchaeota/genética , Variação Genética , Oxirredutases/genética , Água do Mar/microbiologia , Amônia/metabolismo , Regiões Árticas , Primers do DNA/genética , Genes Arqueais/genética , Dados de Sequência Molecular , Oceanos e Mares , Oxirredução , Filogenia , Filogeografia , RNA Ribossômico 16S/genética
7.
Microb Ecol ; 65(2): 277-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23015014

RESUMO

We determined the total and dissolved extracellular enzymatic activity (EEA) of α-glucosidase and ß-glucosidase (AGase and BGase), alkaline phosphatase (APase) and leucine aminopeptidase (LAPase) activities in the epi-, meso- and bathypelagic waters of the subtropical Northeast Atlantic. EEA was also determined in treatments in which bacterial EEA was inhibited by erythromycin. Additionally, EEA decay experiments were performed with surface and deep waters to determine EEA lifetimes in both water masses. The proportion of dissolved to total EEA (66-89 %, 44-88 %, 57-82 % and 86-100 % for AGase, BGase, APase and LAPase, respectively) was generally higher than the cell-associated (i.e., particulate) EEA. The percentage of dissolved to total EEA was inversely proportional to the percentage of erythromycin-inhibited to total EEA. Since erythromycin-inhibited plus dissolved EEA equaled total EEA, this tentatively suggests that cell-associated EEA in the open oceanic water column is almost exclusively of bacterial origin. The decay constants of dissolved EEA were in the range of 0.002-0.048 h(-1) depending on the type of extracellular enzyme, temperature and depth in the water column. Although dissolved EEA can have different origins, the major contribution of Bacteria to cell-associated EEA and the long life-time of dissolved EEA suggest that Bacteria-and not mesophilic Archaea-are essentially the main producers of EEA in the open subtropical Northeast Atlantic down to bathypelagic layers.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Água do Mar/microbiologia , Oceano Atlântico , Eritromicina , Leucil Aminopeptidase/análise , Água do Mar/química , alfa-Glucosidases/análise , beta-Glucosidase/análise
8.
Environ Microbiol ; 13(7): 1827-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554518

RESUMO

Microbial communities in Arctic coastal waters experience dramatic changes in environmental conditions during the spring to summer transition period, potentially leading to major variations in the relationship between viral and prokaryotic communities. To document these variations, a number of physico-chemical and biological parameters were determined during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund, Spitsbergen). The bacterial and viral abundance increased during the spring to summer transition period, probably associated to the increase in temperature and the development of a phytoplankton bloom. The increase in viral abundance was less pronounced than the increase in prokaryotic abundance; consequently, the viral to prokaryotic abundance ratio decreased. The bacterial and viral communities were stratified as determined by Automated Ribosomal Intergenic Spacer Analysis and Randomly Amplified Polymorphic DNA-PCR respectively. Both the bacterial and viral communities were characterized by a relatively low number of operational taxonomic units (OTUs). Despite the apparent low complexity of the bacterial and viral communities, the link between these two communities was weak over the melting season, as suggested by the different trends of prokaryotic and viral abundance during the sampling period. This weak relationship between the two communities might be explained by UV radiation and suspended particles differently affecting the viruses and prokaryotes in the coastal Arctic during this period. Based on our results, we conclude that the viral and bacterial communities in the Arctic were strongly affected by the variability of the environmental conditions during the transition period between spring and summer.


Assuntos
Bactérias/crescimento & desenvolvimento , Camada de Gelo/microbiologia , Camada de Gelo/virologia , Vírus/crescimento & desenvolvimento , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Biota , DNA Espaçador Ribossômico/genética , Eutrofização , Fitoplâncton/microbiologia , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Estações do Ano , Svalbard , Vírus/classificação , Vírus/genética , Água/análise , Microbiologia da Água
9.
Sci Total Environ ; 791: 148423, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412390

RESUMO

Water systems in Southeast Asia accumulate antibiotics and antibiotic resistance genes (ARGs) from multiple origins, notably including human clinics and animal farms. To ascertain the fate of antibiotics and ARGs in natural water environments, we monitored the concentrations of these items in Thailand. Here, we show high concentrations of tetracyclines (72,156.9 ng/L) and lincomycin (23,968.0 ng/L) in pig farms, followed by nalidixic acid in city canals. The city canals and rivers contained diverse distributions of antibiotics and ARGs. Assessments of targeted ARGs, including sul1, sul2, sul3, and tet(M), showed that freshwater (pig farm wastewater, rivers, and canals) consistently contained these ARGs, but these genes were less abundant in seawater. Although sulfonamides were low concentrations (<170 ng/mL), sul1 and sul2 genes were abundant in freshwater (minimum 4.4 × 10-3-maximum 1.0 × 100 copies/16S), suggesting that sul genes have disseminated over a long period, despite cessation of use of this class of antibiotics. Ubiquitous distribution of sul genes in freshwater appeared to be independent of selection pressure. In contrast, water of the coastal sea in the monitored area was not contaminated by these antibiotics or ARGs. The density of Enterobacteriales was lower in seawater than in freshwater, suggesting that the number of ARG-possessing Enterobacteriales falls after entering seawater. From the pig farms, through rivers/canals, to the coastal sea, the occurrence of tetracyclines and tet(M) exhibited some correlation, although not a strong one. However, no correlations were found between concentrations of total antibiotics and ARGs, nor between sulfonamides and sul genes. This is the first comprehensive study showing Thai features of antibiotics and ARGs contaminations. The pig farm is hot spot of antibiotics and ARGs, and sul genes ubiquitously distribute in freshwater environments, which become less abundant in seawater.


Assuntos
Rios , Águas Residuárias , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Suínos , Tailândia
10.
Front Microbiol ; 11: 589262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424790

RESUMO

In order to determine the dynamics of marine fluorescent organic matter (FOM) using high-resolution spatial data, in situ fluorometers have been used in the open ocean. In this study, we measured FOM during the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) expedition from early December 2019 to early February 2020, using an in situ fluorometer at 148 stations along the two meridional transects (at ∼80 and ∼57°E) in the Indian Ocean, covering latitudinal ranges from ∼6°N to ∼20°S and ∼30 to ∼65°S, respectively. The FOM data obtained from the fluorometer were corrected for known temperature dependence and calibrated using FOM data measured onboard by a benchtop fluorometer. Using the relative water mass proportions estimated from water mass analyses, we determined the intrinsic values of FOM and apparent oxygen utilization (AOU) for each of the 12 water masses observed. We then estimated the basin-scale relationship between the intrinsic FOM and the AOU, as well as the turnover time for FOM in the Indian Ocean (410 ± 19 years) in combination with the microbial respiration rate in the dark ocean (>200 m). Consistent to previous estimates in the global tropical and subtropical ocean, the FOM turnover time obtained is of the same order of magnitude as the circulation age of the Indian Ocean, indicating that the FOM is refractory and is a sink for reduced carbon in the dark ocean. A decoupling of FOM and AOU from the basin-scale relationship was also observed in the abyssal waters of the northern Indian Ocean. The local variability may be explained by the effect of sinking organic matter altered by denitrification through the oxygen-deficient zone on enhanced abyssal FOM production relative to oxygen consumption.

11.
Microbes Environ ; 34(1): 83-88, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30799317

RESUMO

Marine microbes play a central role in driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEA) are the 'gatekeeper' of the marine carbon cycle, and these enzymes may be found attached to cells or dissolved (cell-free). Recent studies indicated that the proportion of dissolved enzymatic activity is generally similar to (if not higher than) cell-attached activity. Thus, it is critical to understand the sources and sinks of cell-free EEA in the ocean. We herein empirically tested whether bacterial stress and mortality (induced by mitomycin C) are a source of the cell-free EEA of alkaline phosphatase (APase), beta-glucosidase (BGase), and leucine aminopeptidase (LAPase). We found that bacterial stress and mortality caused relative increases in the proportion of dissolved relative to total EEA of up to 10.5% for APase, 13.5% for BGase, and 7.3% for LAPase. These relative increases in dissolved EEA corresponded to absolute increases in the cell-free pool of 4.8, 7.2, and 3.8% for APase, BGase and LAPase, respectively. Collectively, our results contribute relevant information on the origin of free dissolved extracellular enzymes in marine waters, indicating that bacterial stress and mortality are a source of cell-free enzymatic activity and suggesting a potential link between microbial interactions and the degradation of organic matter via the release of cell-free enzymes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Espaço Extracelular/enzimologia , Água do Mar/microbiologia , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Ecossistema , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/farmacologia , Água do Mar/química , Estresse Fisiológico/efeitos dos fármacos
12.
Sci Total Environ ; 660: 690-696, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743954

RESUMO

Extracellular enzymatic activity (EEA) is performed by cell-associated and cell-free (i.e., "dissolved") enzymes. This cell-free fraction is operationally defined as passing through a 0.22 µm filter. The contribution of cell-free to total EEA is comparable to the cell-associated counterpart, so it is critical to understand what controls the relative importance of cell-free versus cell-associated EEA. However, attempts to tease apart the contribution of EEAs in the so-called dissolved fraction (<0.22 µm) in general, and of the nanoparticle size fraction (0.020-0.20 µm) in particular, to the total EEA pool are lacking. Here we performed experiments with Northern and Southern Hemisphere coastal waters to characterize the potential contribution of that nanoparticle fraction to the total EEA fraction of alkaline phosphatase, beta-glucosidase and leucine aminopeptidase. We found a significant contribution (in both hemispheres) of the nanoparticle fraction to the total EEA pool (up to 53%) that differed depending on the enzyme type and location. Collectively, our results indicate that a significant fraction of the so-called "dissolved EEA" is not really dissolved but associated to nanoparticles, colloidal nanogels and/or viruses. Thus, the total marine EEA pool can actually be divided into a cell-associated, undissolved-cell-free (associated to nano-particle of different origins such as viruses and nanogels) and a dissolved-cell-free pools. Our results also imply that the dissolved EEA pool is more complex than thus far anticipated. Future research will be now needed to further characterize the factors controlling the relative importance of these different pools of EEA, which are key in the recycling of organic matter in the ocean.


Assuntos
Monitoramento Ambiental , Água do Mar/microbiologia , Microbiologia da Água , Fosfatase Alcalina/análise , Bactérias , Leucil Aminopeptidase/análise , Oceanos e Mares , Vírus , beta-Glucosidase/análise
13.
Front Microbiol ; 10: 1801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496997

RESUMO

Viruses are an abundant, diverse and dynamic component of marine and terrestrial ecosystems. In the ocean, viruses play a key role in the biogeochemical cycles and controlling microbial abundance, diversity and evolution. Recent metagenomics studies assessed the structure of the viral community in the upper ocean. However, little is known about the compositional changes in viral communities along the deep ocean conveyor belt. To assess potential changes in the viral community in the global deep-water circulation system, water samples were collected in the core of the North Atlantic Deep Water (NADW) (∼2,500 m) and Pacific Antarctic Bottom Water (∼4,000 m). Microbial and viral abundance were evaluated by flow cytometry. Subsequently, flow cytometry was used to sort virus-like particles and next generation sequencing was applied to build DNA libraries from the sorted virus populations. The viral communities were highly diverse across different oceanic regions with high dissimilarity between samples. Only 18% of the viral protein clusters were shared between the NADW and the Pacific Antarctic Bottom Water. Few viral groups, mainly associated with uncultured environmental and uncultured Mediterranean viruses were ubiquitously distributed along the global deep-water circulation system. Thus, our results point to a few groups of widely distributed abundant viruses in addition to the presence of rare and diverse types of viruses at a local scale.

14.
Sci Total Environ ; 669: 649-656, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30889452

RESUMO

The use of antibiotics in aquaculture causes selection pressure for antibiotic-resistant bacteria (ARB). Antibiotic resistance genes (ARGs) may persist in ARB and the environment for long time even after stopping drug administration. Here we show monthly differences in the occurrences of genes conferring resistance to sulfonamides (i.e. sul1, sul2, sul3), and tetracyclines (tet(M)) in Japanese aquaculture seawater accompanied by records of drug administration. sul2 was found to persist throughout the year, whereas the occurrences of sul1, sul3, and tet(M) changed month-to-month. sul3 and tet(M) were detected in natural bacterial assemblages in May and July, but not in colony-forming bacteria, thus suggesting that the sul3 was harbored by the non-culturable fraction of the bacterial community. Comparison of results from Taiwanese, Japanese, and Finnish aquaculture waters reveals that the profile of sul genes and tet(M) in Taiwan resembles that in Japan, but is distinct from that in Finland. To our knowledge, this work represents the first report to use the same method to compare the dynamics of sul genes and tet(M) in aquaculture seawater in different countries.


Assuntos
Aquicultura/estatística & dados numéricos , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Genes Bacterianos , Água do Mar/microbiologia , Microbiologia da Água , Antibacterianos , Bactérias , Proteínas de Bactérias/genética , Finlândia , Japão , Sulfonamidas , Taiwan , Tetraciclinas
15.
Sci Data ; 6(1): 47, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113983

RESUMO

Due to a typesetting error, 25 rows were omitted from Table 3 in the original version of this Data Descriptor. These missing rows correspond to the following sample names.

16.
Sci Data ; 5: 180176, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30179232

RESUMO

Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Metagenoma , Vírus/genética , Oceano Atlântico , Biodiversidade , Ecossistema , Metagenômica , Oceano Pacífico , Microbiologia da Água
17.
Sci Data ; 5: 180154, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30179231

RESUMO

Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.


Assuntos
Archaea/genética , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Prochlorococcus/genética , Synechococcus/genética , Vírus/genética , Água do Mar , Análise de Célula Única , Microbiologia da Água
18.
Environ Microbiol Rep ; 8(2): 305-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26765966

RESUMO

Viruses are abundant, diverse and dynamic components of the marine environments and play a significant role in the ocean biogeochemical cycles. To assess potential variations in the relation between viruses and microbes in different geographic regions and depths, viral and microbial abundance and production were determined throughout the water column along a latitudinal transect in the South Atlantic Ocean. Path analysis was used to examine the relationships between several abiotic and biotic parameters and the different microbial and viral populations distinguished by flow cytometry. The depth-integrated contribution of microbial and viral abundance to the total microbial and viral biomass differed significantly among the different provinces. Additionally, the virus-to-microbe ratio increased with depth and decreased laterally towards the more productive regions. Our data revealed that the abundance of phytoplankton and microbes is the main controlling factor of the viral populations in the euphotic and mesopelagic layers, whereas in the bathypelagic realm, viral abundance was only weakly related to the biotic and abiotic variables. The relative contribution of the three viral populations distinguished by flow cytometry showed a clear geographical pattern throughout the water column, suggesting that these populations are composed of distinct taxa able to infect specific hosts. Overall, our data indicate the presence of distinct microbial patterns along the latitudinal transect. This variability is not limited to the euphotic layer but also detectable in the meso- and bathypelagic layers.


Assuntos
Bactérias/isolamento & purificação , Biota , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/virologia , Vírus/isolamento & purificação , Oceano Atlântico , Bactérias/classificação , Citometria de Fluxo , Fitoplâncton/classificação , Vírus/classificação
19.
Front Microbiol ; 7: 1996, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018324

RESUMO

Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10-53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.

20.
Front Microbiol ; 7: 1261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559333

RESUMO

The Japan Trench is located under the eutrophic Northwestern Pacific while the Mariana Trench that harbors the unique hadal planktonic biosphere is located under the oligotrophic Pacific. Water samples from the sea surface to just above the seafloor at a total of 11 stations including a trench axis station, were investigated several months after the Tohoku Earthquake in March 2011. High turbidity zones in deep waters were observed at most of the sampling stations. The small subunit (SSU) rRNA gene community structures in the hadal waters (water depths below 6000 m) at the trench axis station were distinct from those in the overlying meso-, bathy and abyssopelagic waters (water depths between 200 and 1000 m, 1000 and 4000 m, and 4000 and 6000 m, respectively), although the SSU rRNA gene sequences suggested that potential heterotrophic bacteria dominated in all of the waters. Potential niche separation of nitrifiers, including ammonia-oxidizing archaea (AOA), was revealed by quantitative PCR analyses. It seems likely that Nitrosopumilus-like AOAs respond to a high flux of electron donors and dominate in several zones of water columns including shallow and very deep waters. This study highlights the effects of suspended organic matter, as induced by seafloor deformation, on microbial communities in deep waters and confirm the occurrence of the distinctive hadal biosphere in global trench environments hypothesized in the previous study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA