Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175944

RESUMO

Artificial cells are based on dynamic compartmentalized systems. Thus, remodeling of membrane-bound systems, such as giant unilamellar vesicles, is finding applications beyond biological studies, to engineer cell-mimicking structures. Giant unilamellar vesicle fusion is rapidly becoming an essential experimental step as artificial cells gain prominence in synthetic biology. Several techniques have been developed to accomplish this step, with varying efficiency and selectivity. To date, characterization of vesicle fusion has relied on small samples of giant vesicles, examined either manually or by fluorometric assays on suspensions of small and large unilamellar vesicles. Automation of the detection and characterization of fusion products is now necessary for the screening and optimization of these fusion protocols. To this end, we implemented a fusion assay based on fluorophore colocalization on the membranes and in the lumen of vesicles. Fluorescence colocalization was evaluated within single compartments by image segmentation with minimal user input, allowing the application of the technique to high-throughput screenings. After detection, statistical information on vesicle fluorescence and morphological properties can be summarized and visualized, assessing lipid and content transfer for each object by the correlation coefficient of different fluorescence channels. Using this tool, we report and characterize the unexpected fusogenic activity of sodium chloride on phosphatidylcholine giant vesicles. Lipid transfer in most of the vesicles could be detected after 20 h of incubation, while content exchange only occurred with additional stimuli in around 8% of vesicles.


Assuntos
Corantes Fluorescentes , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Fosfatidilcolinas , Fusão de Membrana
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834655

RESUMO

Cell morphology is an essential and phenotypic trait that can be easily tracked during adaptation and evolution to environmental changes. Thanks to the rapid development of quantitative analytical techniques for large populations of cells based on their optical properties, morphology can be easily determined and tracked during experimental evolution. Furthermore, the directed evolution of new culturable morphological phenotypes can find use in synthetic biology to refine fermentation processes. It remains unknown whether and how fast we can obtain a stable mutant with distinct morphologies using fluorescence-activated cell sorting (FACS)-directed experimental evolution. Taking advantage of FACS and imaging flow cytometry (IFC), we direct the experimental evolution of the E. coli population undergoing continuous passage of sorted cells with specific optical properties. After ten rounds of sorting and culturing, a lineage with large cells resulting from incomplete closure of the division ring was obtained. Genome sequencing highlighted a stop-gain mutation in amiC, leading to a dysfunctional AmiC division protein. The combination of FACS-based selection with IFC analysis to track the evolution of the bacteria population in real-time holds promise to rapidly select and culture new morphologies and association tendencies with many potential applications.


Assuntos
Bactérias , Escherichia coli , Citometria de Fluxo/métodos , Separação Celular , Fenótipo
3.
Biochem Biophys Res Commun ; 618: 113-118, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35717905

RESUMO

Lipid giant vesicles represent a versatile minimal model system to study the physicochemical basis of lipid membrane fusion. Membrane fusion processes are also of interest in synthetic cell research, where cell-mimicking behavior often requires dynamically interacting compartments. For these applications, triggered fusion compatible with transcription-translation systems is key in achieving complexity. Recently, a photosensitive surfactant, azobenzene trimethylammonium bromide (AzoTAB), has been reported to induce membrane fusion by a photoinduced conformational change. Using imaging flow cytometer (IFC) and confocal microscopy we quantitatively investigated photoinduced AzoTAB-mediated fusion of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine vesicles. The IFC analysis result showed that the fusion rate could reach about 40% following AzoTAB addition and UV irradiation in optimized conditions. We confirmed the compatibility between AzoTAB-induced vesicle fusion and a synthetic cell-free protein translation system using green fluorescent protein as reporter. With the techniques presented, cell-sized vesicle fusion can be quantitatively analyzed and optimized, paving the way to controllable synthetic cells with fundamental biological functions like the ability to express proteins from encapsulated plasmids.


Assuntos
Brometos , Fusão de Membrana , Compostos Azo , Biossíntese de Proteínas , Compostos de Amônio Quaternário
4.
Appl Microbiol Biotechnol ; 106(24): 8139-8149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36355086

RESUMO

Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.


Assuntos
Biologia Molecular , Biologia Sintética , DNA/genética , Biossíntese de Proteínas
5.
Proc Natl Acad Sci U S A ; 114(8): E1336-E1344, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167777

RESUMO

To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on an Escherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas/fisiologia , Algoritmos , Simulação por Computador , Dipeptídeos/metabolismo , Modelos Biológicos
6.
Biochem Soc Trans ; 47(6): 1909-1919, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819942

RESUMO

A protocell is a synthetic form of cellular life that is constructed from phospholipid vesicles and used to understand the emergence of life from a nonliving chemical network. To be considered 'living', a protocell should be capable of self-proliferation, which includes successive growth and division processes. The growth of protocells can be achieved via vesicle fusion approaches. In this review, we provide a brief overview of recent research on the formation of a protocell, fusion and division processes of the protocell, and encapsulation of a defined chemical network such as the genetic material. We also provide some perspectives on the challenges and future developments of synthetic protocell research.


Assuntos
Células Artificiais , Divisão Celular , Fusão Celular
7.
Langmuir ; 35(6): 2375-2382, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30645943

RESUMO

Many biologists, biochemists, and biophysicists study giant vesicles, which have a diameter of >1 µm, owing to their ease of characterization using standard optical methods. More recently, there has been interest in using giant vesicles as model systems for living cells and for the construction of artificial cells. In fact, there have been a number of reports about functionalizing giant vesicles using membrane-bound pore proteins and encapsulating biochemical reactions. Among the various methods for preparing giant vesicles, the water-in-oil emulsion transfer method is particularly well established. However, the giant vesicles prepared by this method have complex and heterogeneous properties, such as particle size and membrane structure. Here, we demonstrate the characterization of giant vesicles by imaging flow cytometry to provide quantitative and qualitative information about the vesicle products prepared by the water-in-oil emulsion transfer method. Through image-based analyses, several kinds of protocol byproducts, such as oil droplets and vesicles encapsulating no target molecules, were identified and successfully quantified. Further, the optimal agitation conditions for the water-in-oil emulsion transfer method were found from detailed analysis of imaging flow cytometry data. Our results indicate that a sonication-based water-in-oil emulsion transfer method exhibited a higher efficiency in producing giant vesicles, about 10 times or higher than that of vortex and rumble strip-based methods. It is anticipated that these approaches will be useful for fine-tuning giant vesicle production and subsequent applications.

8.
Nucleic Acids Res ; 45(18): 10895-10905, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977654

RESUMO

Two of the many goals of synthetic biology are synthesizing large biochemical systems and simplifying their assembly. While several genes have been assembled together by modular idempotent cloning, it is unclear if such simplified strategies scale to very large constructs for expression and purification of whole pathways. Here we synthesize from oligodeoxyribonucleotides a completely de-novo-designed, 58-kb multigene DNA. This BioBrick plasmid insert encodes 30 of the 31 translation factors of the PURE translation system, each His-tagged and in separate transcription cistrons. Dividing the insert between three high-copy expression plasmids enables the bulk purification of the aminoacyl-tRNA synthetases and translation factors necessary for affordable, scalable reconstitution of an in vitro transcription and translation system, PURE 3.0.


Assuntos
Genes Sintéticos , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Plasmídeos/genética , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 113(15): 4045-50, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035976

RESUMO

To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita , RNA/biossíntese , Animais , Parasitos/genética
10.
Proc Natl Acad Sci U S A ; 113(3): 590-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26711996

RESUMO

Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably.


Assuntos
Lipossomos/química , RNA/química , Congelamento , Lipídeos/química , Temperatura
11.
BMC Microbiol ; 18(1): 101, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176803

RESUMO

BACKGROUND: Bacterial growth is an important topic in microbiology and of crucial importance to better understand living cells. Bacterial growth dynamics are quantitatively examined using various methods to determine the physical, chemical or biological features of growing populations. Due to methodological differences, the exponential growth rate, which is a parameter that is representative of growth dynamics, should be differentiated. Ignoring such differentiation in the growth analysis might overlook somehow slight but significant changes in cellular features of the growing population. Both experimental and theoretical investigations are required to address these issues. RESULTS: This study experimentally verified the differentiation in growth rates attributed to different methodologies, and demonstrated that the most popular method, optical turbidity, led to the determination of a lower growth rate in comparison to the methods based on colony formation and cellular adenosine triphosphate, due to a decay effect of reading OD600 during a population increase. Accordingly, the logistic model, which is commonly applied to the high-throughput growth data reading the OD600, was revised by introducing a new parameter: the decay rate, to compensate for the lowered estimation in growth rates. An improved goodness of fit in comparison to the original model was acquired due to this revision. Applying the modified logistic model to hundreds of growth data acquired from an assortment of Escherichia coli strains carrying the reduced genomes led to an intriguing finding of a correlation between the decay rate and the genome size. The decay effect seemed to be partially attributed to the decrease in cell size accompanied by a population increase and was medium dependent. CONCLUSIONS: The present study provides not only an improved theoretical tool for the high-throughput studies on bacterial growth dynamics linking with optical turbidity to biological meaning, but also a novel insight of the genome reduction correlated decay effect, which potentially reflects the changing cellular features during population increase. It is valuable for understanding the genome evolution and the fitness increase in microbial life.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Tamanho do Genoma , Técnicas de Cultura de Células , Contagem de Colônia Microbiana , Escherichia coli/citologia , Genoma Bacteriano , Modelos Biológicos
12.
Arch Virol ; 163(10): 2655-2662, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29869034

RESUMO

A population's growth rate is determined by multiple 'life history traits'. To quantitatively determine which life history traits should be improved to allow a living organism to adapt to an inhibitory environment is an important issue. Previously, we conducted thermal adaptation experiments on the RNA bacteriophage Qß using three independent replicates and reported that all three end-point populations could grow at a temperature (43.6°C) that inhibited the growth of the ancestral strain. Even though the fitness values of the endpoint populations were almost the same, their genome sequence was not, indicating that the three thermally adapted populations may have different life history traits. In this study, we introduced each mutation observed in these three end-point populations into the cDNA of the Qß genome and prepared three different mutants. Quantitative analysis showed that they tended to increase their fitness by increasing the adsorption rate to their host, shortening their latent period (i.e., the duration between phage infection and progeny release), and increasing the burst size (i.e., the number of progeny phages per infected cell), but all three mutants decreased their thermal stability. However, the degree to which these traits changed differed. The mutant with the least mutations showed a smaller decrease in thermal stability, the largest adsorption rate to the host, and the shortest latent period. These results indicated that several different adaptive routes exist by which Qß can adapt to higher temperatures, even though Qß is a simple RNA bacteriophage with a small genome size, encoding only four genes.


Assuntos
Mutação , Fagos RNA/genética , Adaptação Fisiológica , Escherichia coli/virologia , Genoma Viral , Temperatura Alta , Fenótipo , Fagos RNA/química , Fagos RNA/fisiologia
13.
PLoS Genet ; 11(7): e1005392, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26177190

RESUMO

The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular Direcionada , Aptidão Genética , Seleção Genética , Escherichia coli/genética , Deriva Genética , Mutação/genética , Análise de Sequência de DNA , Temperatura
14.
Biochem Biophys Res Commun ; 486(3): 852-857, 2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363869

RESUMO

Living cells reorganize their gene expression through regulatory machineries in response to external perturbations. The contribution of the regulation to the noise in gene expression is of great interest. In this study, we evaluate the contribution of both native and foreign regulations to the extrinsic noise in gene expression. We analyzed the gene expression data of a mini-library containing 70 genetic constructs of 136 clones into which the gfp gene had been chromosomally incorporated under the control of either native or foreign regulation. We found that the substitution of native by foreign regulation, i.e., the insertion of the Ptet promoter, triggered a decrease in the extrinsic noise, which was independent of the protein abundance. The reanalyses of varied genomic data sets verified that the noisy gene expression mediated by native regulations is a common feature, regardless of the diversity in the genetic approaches used. Disturbing native regulations by a synthetic promoter reduced the extrinsic noise in gene expression in Escherichia coli. It indicated that the extrinsic noise in gene expression caused by the native regulation could be further repressed. These results suggest a tendency of released regulation leading to reduced noise and a linkage between noise and plasticity in the regulation of gene expression.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Mutagênese Insercional , Regiões Promotoras Genéticas , Engenharia de Proteínas , Razão Sinal-Ruído , Transcrição Gênica
15.
Nucleic Acids Res ; 43(16): 8033-43, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26202975

RESUMO

Single-stranded RNA (ssRNA) is the simplest form of genetic molecule and constitutes the genome in some viruses and presumably in primitive life-forms. However, an innate and unsolved problem regarding the ssRNA genome is formation of inactive double-stranded RNA (dsRNA) during replication. Here, we addressed this problem by focusing on the secondary structure. We systematically designed RNAs with various structures and observed dsRNA formation during replication using an RNA replicase (Qß replicase). From the results, we extracted a simple rule regarding ssRNA genome replication with less dsRNA formation (less GC number in loops) and then designed an artificial RNA that encodes a domain of the ß-galactosidase gene based on this rule. We also obtained evidence that this rule governs the natural genomes of all bacterial and most fungal viruses presently known. This study revealed one of the structural design principles of an ssRNA genome that replicates continuously with less dsRNA formation.


Assuntos
Genoma , RNA/biossíntese , RNA/química , Genoma Viral , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/química , RNA de Cadeia Dupla/química , RNA Polimerase Dependente de RNA/metabolismo , beta-Galactosidase/genética
16.
Nucleic Acids Res ; 43(2): 1304-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25564530

RESUMO

Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia coli strains to address these questions. Three different cell fates, designated good survivors, poor survivors and failures, were observed when the strains starved. Large fluctuations in the expression of the rewired gene were commonly observed with increasing cell size, but these changes were insufficient for adaptation. Cooperative reorganizations in the corresponding operon and genome-wide gene expression largely contributed to the final success. Transcriptome reorganizations that generally showed high-dimensional dynamic changes were restricted within a one-dimensional trajectory for adaptation to gene rewiring, indicating a general path directed toward cellular plasticity for a successful cell fate. This finding of global coordination supports a mechanism of stochastic adaptation and provides novel insights into the design and application of complex genetic or metabolic networks.


Assuntos
Redes Reguladoras de Genes , Tamanho Celular , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Histidina/biossíntese , Óperon , Processos Estocásticos , Transcrição Gênica
17.
Mol Biol Evol ; 32(12): 3205-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342111

RESUMO

Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution.


Assuntos
Aptidão Genética , Modelos Genéticos , Células Artificiais , Evolução Biológica , Evolução Molecular , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma
18.
Chembiochem ; 17(13): 1229-32, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27038303

RESUMO

Adaptation to various environments is a remarkable characteristic of life. Is this limited to extant complex living organisms, or is it also possible for a simpler self-replication system to adapt? In this study, we addressed this question by using a translation-coupled RNA replication system that comprised a reconstituted translation system and an RNA "genome" that encoded a replicase gene. We performed RNA replication reactions under four conditions, under which different components of translation were partly inhibited. We found that replication efficiency increased with the number of rounds of replication under all the tested conditions. The types of dominant mutations differed depending on the condition, thus indicating that this simple system adapted to different environments in different ways. This suggests that even a primitive self-replication system composed of a small number of genes on the early earth could have had the ability to adapt to various environments.


Assuntos
RNA Polimerase Dependente de RNA/genética , RNA/genética , Evolução Molecular Direcionada , Escherichia coli/genética , Genoma , Mutação , Subunidades Proteicas/genética , Q beta Replicase/genética
19.
Chembiochem ; 17(13): 1282-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037959

RESUMO

Cell membranes inhibit the diffusion of intracellular materials, and compartment size can strongly affect the intracellular biochemical reactions. To assess the effect of the size of microcompartments on intracellular reactions, we constructed a primitive cell model consisting of giant liposomes and a translation-coupled RNA replication (TcRR) system. The RNA was replicated by Qß replicase, which was translated from the RNA in giant liposomes encapsulating the cell-free translation system. A reporter RNA encoding the antisense strand of ß-glucuronidase was introduced into the system to yield a TcRR read-out (green fluorescence). We demonstrate that TcRR was hardly detectable in larger liposomes (230 fL) but was more effective in smaller (7.7 fL) liposomes. Our experimental and theoretical results show that smaller microcompartments considerably enhance TcRR because the synthesized molecules, such as RNA and replicases, are more concentrated in smaller liposomes.


Assuntos
Evolução Química , RNA/genética , Lipossomas Unilamelares/química , Sistema Livre de Células , Fluoresceínas/química , Corantes Fluorescentes/química , Genes Reporter , Glucuronidase/genética , Glucuronidase/metabolismo , Glucuronídeos/química , Modelos Químicos , Tamanho da Partícula , Q beta Replicase/genética , Q beta Replicase/metabolismo , RNA/metabolismo
20.
Genes Cells ; 20(1): 68-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378049

RESUMO

So-called mutators emerge when mismatch repair and proofreading mechanisms are defective. Mutators not only accelerate the accumulation of mutations that are beneficial for adaptation but also cause a large number of deleterious mutations that are disadvantageous for cell growth. However, such growth defects may be compensated by nutrient availability. How the growth burden is associated with high mutability in relation to nutritional variation is an intriguing question. To address this question, we constructed a variety of Escherichia coli mutator strains through combinatorial deletions of mismatch repair and proofreading genes and quantitatively evaluated their growth and mutation rates under different nutritional conditions. Growth defects caused by high mutation rates were commonly observed in all mutators, and these defects were alleviated by nutrient supplementation in most mutators. In addition, the mutation rates of the mutators fluctuated greatly in response to nutritional conditions, in contrast to the nearly constant mutation rate of the wild-type strain under varying nutritional conditions. The results showed conditional growth defects and nutrition-sensitive mutability as general features of mutators. This study indicates the importance of modulating mutability in response to changing nutrient conditions to minimize the risk of extinction due to genetic load.


Assuntos
Escherichia coli/genética , Genes Bacterianos , Mutagênicos/metabolismo , Meios de Cultura , Reparo de Erro de Pareamento de DNA , Escherichia coli/fisiologia , Mutação , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA