Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochem Biophys Res Commun ; 699: 149566, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290176

RESUMO

There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia , Infecções Estafilocócicas/microbiologia , Ácidos Graxos , Testes de Sensibilidade Microbiana
2.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373388

RESUMO

d-amino acids have recently been found to be present in the extracellular milieu at millimolar levels and are therefore assumed to play a physiological function. However, the pathway (or potential pathways) by which these d-amino acids are secreted remains unknown. Recently, Escherichia coli has been found to possess one or more energy-dependent d-alanine export systems. To gain insight into these systems, we developed a novel screening system in which cells expressing a putative d-alanine exporter could support the growth of d-alanine auxotrophs in the presence of l-alanyl-l-alanine. In the initial screening, five d-alanine exporter candidates, AlaE, YmcD, YciC, YraM, and YidH, were identified. Transport assays of radiolabeled d-alanine in cells expressing these candidates indicated that YciC and AlaE resulted in lower intracellular levels of d-alanine. Further detailed transport assays of AlaE in intact cells showed that it exports d-alanine in an expression-dependent manner. In addition, the growth constraints on cells in the presence of 90 mM d-alanine were mitigated by the overexpression of AlaE, implying that AlaE could export free d-alanine in addition to l-alanine under conditions in which intracellular d/l-alanine levels are raised. This study also shows, for the first time, that YciC could function as a d-alanine exporter in intact cells.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Escherichia coli , Alanina/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
3.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275050

RESUMO

AlaE is the smallest amino acid exporter identified in Escherichia coli. It exports l-alanine using the proton motive force and plays a pivotal role in maintaining intracellular l-alanine homeostasis by acting as a safety valve. However, our understanding of the molecular mechanisms of substrate export by AlaE is still limited because structural information is lacking. Due to its small size (149 amino acid residues), it has been speculated that AlaE functions by forming an oligomer. In this study, we performed chemical cross-linking and pull-down assays and showed that AlaE indeed generates homo-oligomers as a functional unit. Previous random mutagenesis experiments identified three loss-of-function AlaE point mutations in the predicted transmembrane helix 4 (TM4) region, two of which are present in the GxxxG motif. When alanine-scanning mutagenesis was applied to the TM4 region, the AlaE derivatives that had amino acid substitutions around the GxxxG motif showed low l-alanine export activities, indicating that the GxxxG motif in TM4 plays an important role in substrate export. However, these AlaE variants with low activity could still form oligomers. We therefore concluded that AlaE forms homo-oligomers and that the GxxxG motif in the TM4 region plays an essential role in AlaE activity but is not involved in AlaE oligomer formation.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Alanina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Transporte Biológico/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
World J Microbiol Biotechnol ; 38(3): 54, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35149902

RESUMO

Mannosylerythritol lipid-B (MEL-B), which comprises ester-bonded hydrophilic ME and hydrophobic fatty acids, is a bio-surfactant with various unique properties, including antimicrobial activity against most gram-positive bacteria. The gram-positive Staphylococcus aureus is a causative pathogen of dairy cattle mastitis, which results in considerable economic loss in the dairy industry. Here, we demonstrate the efficacy of MEL-B as a disinfectant against bovine-derived S. aureus and elucidate a mechanism of action of MEL-B in the inhibition of bacterial growth. The growth of bovine mastitis causative S. aureus BM1006 was inhibited when cultured with MEL-B above 10 ppm. The activity of MEL-B required fatty acids (i.e., caprylic and myristoleic acids) as ME, the component of MEL-B lacking fatty acids, did not inhibit the growth of S. aureus even at high concentrations. Importantly, ME-bound fatty acids effectively inhibited the growth of S. aureus when compared with free fatty acids. Specifically, the concentrations of ME-bound fatty acids and free caprylic and myristoleic acids required to inhibit the growth of S. aureus were 10, 1442, and 226 ppm, respectively. The involvement of ME in the antimicrobial activity of MEL-B was confirmed by digestion of MEL-B with alkali, which dissociated ME and fatty acids. These results indicated that a mechanism of action of MEL-B in inhibiting the growth of S. aureus could be explained by the effective transporting of antimicrobial fatty acids to the bacterial surface via hydrophilic ME.


Assuntos
Anti-Infecciosos , Mastite Bovina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Bovinos , Feminino , Glicolipídeos , Mastite Bovina/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
5.
Int J Mol Sci ; 20(19)2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591285

RESUMO

The intracellular level of amino acids is determined by the balance between their anabolic and catabolic pathways. L-alanine is anabolized by three L-alanine synthesizing enzymes and catabolized by two racemases and D-amino acid dehydrogenase (DadA). In addition, its level is regulated by L-alanine movement across the inner membrane. We identified the novel gene alaE, encoding an L-alanine exporter. To elucidate the physiological function of L-Alanine exporter, AlaE, we determined the susceptibility of alaE-, dadA-, and alaE/dadA-deficient mutants, derived from the wild-type strain MG1655, to L-alanyl-L-alanine (Ala-Ala), which shows toxicity to the L-alanine-nonmetabolizing variant lacking alaE. The dadA-deficient mutant has a similar minimum inhibitory concentration (MIC) (>1.25 mg/mL) to that observed in MG1655. However, alaE- and alaE/dadA-deficient mutants had MICs of 0.04 and 0.0025 mg/mL, respectively. The results suggested that the efficacy of AlaE to relieve stress caused by toxic intracellular accumulation of L-alanine was higher than that of DadA. Consistent with this, the intracellular level of alanine in the alaE-mutant was much higher than that in MG1655 and the dadA-mutant. We, therefore, conclude that AlaE functions as a 'safety-valve' to prevent the toxic level accumulation of intracellular L-alanine under a peptide-rich environment, such as within the animal intestine.


Assuntos
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , D-Aminoácido Oxidase/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Alanina/toxicidade , Sistemas de Transporte de Aminoácidos Neutros/genética , Transporte Biológico , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mutação , Estresse Fisiológico
6.
Vet Res ; 49(1): 22, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482613

RESUMO

Staphylococcus aureus is a major pathogen that causes subclinical mastitis associated with huge economic losses to the dairy industry. A few vaccines for bovine mastitis are available, and they are expected to induce the production of S. aureus-specific antibodies that prevent bacterial adherence to host cells or promote opsonization by phagocytes. However, the efficacy of such vaccines are still under debate; therefore, further research focusing on improving the current vaccines by seeking additional mechanisms of action is required to reduce economic losses due to mastitis in the dairy industry. Here, we generated S. aureus-specific bovine IgG antibodies (anti-S. aureus) that directly inhibited bacterial growth in vitro. Inhibition depended on specificity for anti-S. aureus, not the interaction between Protein A and the fragment crystallizable region of the IgG antibodies or bacterial agglutination. An in vitro culture study using S. aureus strain JE2 and its deletion mutant JE2ΔSrtA, which lacks the gene encoding sortase A, revealed that the effect of anti-S. aureus was sortase-A-independent. Sortase A is involved in the synthesis of cell-wall-associated proteins. Thus, other surface molecules, such as membrane proteins, cell surface polysaccharides, or both, may trigger the inhibition of bacterial growth by anti-S. aureus. Together, our findings contribute insights into developing new strategies to further improve the available mastitis vaccine by designing a novel antigen on the surface of S. aureus to induce inhibitory signals that prevent bacterial growth.


Assuntos
Anticorpos Antibacterianos/metabolismo , Doenças dos Bovinos/imunologia , Imunoglobulina G/metabolismo , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/imunologia , Animais , Bovinos , Masculino , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/crescimento & desenvolvimento
7.
Arch Microbiol ; 199(1): 105-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27572251

RESUMO

The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.


Assuntos
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Transporte Biológico , Cisteína/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos
8.
Microbiology (Reading) ; 162(7): 1243-1252, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166225

RESUMO

Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.


Assuntos
Alanina/metabolismo , Transporte Biológico/fisiologia , Dipeptídeos/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Alanina/química , Alanina Racemase/genética , Transporte Biológico/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cromatografia Líquida de Alta Pressão , D-Aminoácido Oxidase/farmacologia , Dicicloexilcarbodi-Imida/farmacologia , Escherichia coli/genética
9.
Anticancer Drugs ; 26(1): 90-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25187316

RESUMO

The efficacy of gemcitabine (GEM), a standard treatment agent for pancreatic cancer, is insufficient because of primary or acquired resistance to this drug. Patients with tumors intrinsically sensitive to GEM gradually acquire resistance and require a shift to second agents, which are associated with the risk of cross-resistance. However, whether cross-resistance is actually present has long been disputed. Using six GEM-resistant and four highly GEM-resistant clones derived from the pancreatic cancer cell line BxPC-3, we determined the resistance of each clone and parent cell line to GEM and four anticancer agents (5-FU, CDDP, CPT-11, and DTX). The GEM-resistant clones had different resistances to GEM and other agents, and did not develop a specific pattern of cross-resistance. This result shows that tumor cells are heterogeneous. However, all highly GEM-resistant clones presented overexpression of ribonucleotide reductase subunit M1 (RRM1), a target enzyme for metabolized GEM, and showed cross-resistance with 5-FU. The expression level of RRM1 was high; therefore, resistance to GEM was high. We showed that a tumor cell acquired resistance to GEM, and cross-resistance developed in one clone. These results suggest that only cells with certain mechanisms for high-level resistance to GEM survive against selective pressure applied by highly concentrated GEM. RRM1 may be one of the few factors that can induce high resistance to GEM and a suitable therapeutic target for GEM-resistant pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Células Clonais/efeitos dos fármacos , Células Clonais/patologia , Desoxicitidina/farmacologia , Humanos , RNA Mensageiro/metabolismo , Ribonucleosídeo Difosfato Redutase , Proteínas Supressoras de Tumor/metabolismo , Gencitabina
10.
Molecules ; 20(5): 7790-806, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25939068

RESUMO

The iron acquisition systems in Pseudomonas aeruginosa are inducible in response to low-iron conditions and important for growth of this organism under iron limitation. OprM is the essential outer membrane subunit of the MexAB-OprM xenobiotic efflux pump. We designed and constructed a new model antimicrobial screening system targeting both the iron-uptake system and xenobiotic efflux pumps. The oprM gene was placed immediately downstream of the ferri-pyoverdine receptor gene, fpvA, in the host lacking chromosomal oprM and the expression of oprM was monitored by an antibiotic susceptibility test under iron depleted and replete conditions. The recombinant cells showed wild-type susceptibility to pump substrate antibiotics, e.g., aztreonam, under iron limitation and became supersusceptible to them under iron repletion, suggesting that expression of oprM is under control of the iron acquisition system. Upon screening of a chemical library comprising 2952 compounds using this strain, a compound-ethyl 2-(1-acetylpiperidine-4-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate-was found to enhance the efficacy of aztreonam under iron limitation, suggesting that the compound inhibits either the iron acquisition system or the MexAB-OprM efflux pump. This compound was subsequently found to inhibit the growth of wild-type cells in the presence of sublethal amounts of aztreonam, regardless of the presence or absence of dipyridyl, an iron-chelator. The compound was eventually identified to block the function of the MexAB-OprM efflux pump, showing the validity of this new method.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana Múltipla/genética , Quelantes de Ferro/farmacologia , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Aztreonam/farmacologia , Transporte Biológico/genética , Cloranfenicol/farmacologia , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
11.
Asian-Australas J Anim Sci ; 28(2): 273-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557825

RESUMO

Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.

12.
Analyst ; 139(12): 3088-96, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24781334

RESUMO

Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed a fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in the ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined its expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 µM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As the EtBr concentration increases to 40 µM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. The modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block the translocation pore or restrict the movement of the individual pump domains, which may lead to partially restricted efflux activity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Fluorescência/métodos , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Bases , Primers do DNA , Proteínas de Fluorescência Verde/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
13.
Microorganisms ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257933

RESUMO

Intestinal microbiota and Toll-like receptor 2 (TLR2), which can bind lipoteichoic acid produced by microbiota, might contribute to the pathogenesis of Parkinson's disease (PD), which is characterized by α-synuclein accumulation. Although the contribution of intestinal microbiota and TLR2 to PD pathology was validated in genetic PD models, evidence suggests that the effects of TLR2 signaling on proteinopathy might depend on the presence of a genetic etiology. We examined the impact of intestinal microbiota and TLR2 signaling on α-synuclein pathology in a nontransgenic mouse model of sporadic PD. While an α-synuclein preformed fibrils injection successfully reproduced PD pathology by inducing accumulation of α-synuclein aggregates, microglial activation and increased TLR2 expression in the brains of nontransgenic mice, antibiotic-induced reduction in the density of intestinal microbiota and TLR2 knockout had small impact on these changes. These findings, which are in contrast to those reported in transgenic mice harboring transgene encoding α-synuclein, indicate that the contribution of intestinal microbiota and TLR2 signaling to α-synuclein pathogenesis might be influenced by the presence of a genetic etiology. Additionally, these findings suggest that integrating insights from this experimental model and genetic models would further advance our understanding of the molecular mechanisms underlying sporadic PD.

14.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399816

RESUMO

Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.

15.
Anticancer Drugs ; 24(8): 826-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817390

RESUMO

Antimicrobial peptides of the cathelicidin family play a central role in the host defense system. Our group has reported previously that cathelicidin-related or cathelicidin-modified antimicrobial peptides, such as FF/CAP-18, have antiproliferative effects on the squamous cell carcinoma cell line SAS-H1 and colon cancer-derived cell line HCT116. Ceragenin CSA-13, which mimics the hydrophobic and cationic morphology of cathelicidin-related peptides, was developed to reduce synthetic costs and resolve stability issues in the presence of proteases. In this study, we evaluated the antiproliferative effect of CSA-13 on HCT116 cells. We evaluated the effects of CSA-13 in HCT116 cells by measuring cell growth, detecting apoptosis, analyzing the cell cycle, and examining mitochondrial membrane depolarization. Treatment with CSA-13 suppressed HCT116 cell proliferation in a dose-dependent manner, increasing the incidence of apoptosis detected by the binding of Annexin V. Furthermore, cell cycle analysis showed that the cell cycle of CSA-13-treated wild-type and p53 null mutant HCT116 cells was arrested at the G1/S phase, indicating that CSA-13 affects the cell cycle by a p53-independent pathway. Our study showed that CSA-13 exerts an antiproliferative effect in cancer cells similar to that of FF/CAP-18, suggesting that membrane-permeabilizing capability is the common underlying mechanism for anticancer and antimicrobial effects of CSA-13 and anitimicrobial peptides.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Mutação , Esteroides/farmacologia , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Fragmentação do DNA , Relação Dose-Resposta a Droga , Ativação Enzimática , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fatores de Tempo
16.
Curr Microbiol ; 66(4): 359-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23224413

RESUMO

Leptospires are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior that cause a number of emerging and re-emerging diseases worldwide called leptospirosis. The unusual form of motility is thought to play a critical role in the infection process. However, the inhibition mechanism of antiserum on the motility of Leptospira to attenuate the infection efficiency is unknown. In this study, effect of antiserum on motility was quantitatively investigated by swimming speed. Relatively low concentration of antiserum was found to inhibit leptospiral motility, suggesting that the basic immunization can affect the infection efficiency. Recovery of motility a few hours later after the addition of antiserum was observed. This raises a hypothesis that Leptospira carries surface molecules bound with antibodies toward the cell end to escape and recovers the motility.


Assuntos
Anticorpos Antibacterianos/imunologia , Leptospira/imunologia , Leptospira/fisiologia , Locomoção/efeitos dos fármacos , Fatores de Tempo
17.
J Gen Appl Microbiol ; 69(3): 142-149, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36567121

RESUMO

In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.


Assuntos
Corynebacterium glutamicum , Proteínas de Membrana Transportadoras , Fermentação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Alanina/genética , Alanina/metabolismo , Transporte Biológico , Engenharia Metabólica/métodos
18.
Anticancer Drugs ; 23(5): 505-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22334000

RESUMO

In a previous study, we showed that a combination of an oral fluoropyrimidine anticancer agent (S-1) and gemcitabine (GEM) had synergistic effects on cell growth and cell cycle arrest in the pancreatic cancer cell line MIA PaCa-2. Therefore, we conducted further mechanistic studies using the pancreatic cancer cell lines MIA PaCa-2 and SUIT-2. The combined effect of S-1 and GEM in SUIT-2 cells was evaluated using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the effects of S-1, GEM and S-1 plus GEM on cell cycle regulation were assessed using flow cytometry. We also examined the expression of several cell cycle regulatory proteins in both MIA PaCa-2 and SUIT-2 cells by western blotting. Classical isobolographic analysis of the MTT assay results showed that the combination of S-1 and GEM had a synergistic effect in SUIT-2 cells, and flow cytometric analysis of the cell cycle showed that the combination of S-1 plus GEM induced S-phase arrest to a greater degree than did either S-1 or GEM alone. Also, the combination of S-1 and GEM resulted in the downregulation of cyclin D1 expression and upregulation of cyclin A, p21 and p27 expression levels. Treatment of MIA PaCa-2 and SUIT-2 cells with a combination of both drugs also led to the increased phosphorylation of checkpoint kinase 1. Combined treatment with S-1 and GEM resulted in more prolonged S-phase arrest than with either treatment alone. This difference is shown to be potentially due to the higher levels of phosphorylated checkpoint kinase 1 in pancreatic cancer cell lines treated with the two agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclinas/biossíntese , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Masculino , Ácido Oxônico/administração & dosagem , Ácido Oxônico/farmacologia , Ácido Oxônico/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fase S/efeitos dos fármacos , Tegafur/administração & dosagem , Tegafur/farmacologia , Tegafur/uso terapêutico , Gencitabina
19.
Microorganisms ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363708

RESUMO

Staphylococcus aureus is one of the most important pathogens in humans as well as in livestock. Particularly, bovine mastitis caused by S. aureus is a serious issue in dairy farms due to disease recurrence. Here, cases of S. aureus-mediated intramammary infection occurring in the Miyagi Prefecture in Japan were monitored from May 2015 to August 2019; a total of 59 strains (49 from bovine milk and 10 from bulk milk) were obtained from 15 dairy farms and analyzed via sequence-based typing methods and antibiotic susceptibility tests. Two pairs of isolates were determined as recurrence cases from the same cows in distinct farms. The sequence type (ST), spa type, and coa type of each pair were the same: one pair showed ST705, t529, and VIb and the other showed ST352, t267, and VIc. In addition, the possession of toxin genes analyzed of each pair was exactly the same. Furthermore, seven oxacillin-sensitive clonal complex 398 isolates were obtained from a single farm. This is the first confirmed case of a Methicillin-Sensitive SA (MSSA) ST398 strain isolated from mastitis-containing cows in Japan. Our findings suggest that nationwide surveillance of the distribution of ST398 strains in dairy farms is important for managing human and animal health.

20.
Microbiome ; 10(1): 31, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35184756

RESUMO

BACKGROUND: Establishing fecal microbiota transplantation (FMT) to prevent multifactorial diarrhea in calves is challenging because of the differences in farm management practices, the lack of optimal donors, and recipient selection. In this study, the underlying factors of successful and unsuccessful FMT treatment cases are elucidated, and the potential markers for predicting successful FMT are identified using fecal metagenomics via 16S rRNA gene sequencing, fecal metabolomics via capillary electrophoresis time-of-flight mass spectrometry, and machine learning approaches. RESULTS: Specifically, 20 FMT treatment cases, in which feces from healthy donors were intrarectally transferred into recipient diarrheal calves, were conducted with a success rate of 70%. Selenomonas was identified as a microorganism genus that showed significant donor-recipient compatibility in successful FMT treatments. A strong positive correlation between the microbiome and metabolome data, which is a prerequisite factor for FMT success, was confirmed by Procrustes analysis in successful FMT (r = 0.7439, P = 0.0001). Additionally, weighted gene correlation network analysis confirmed the positively or negatively correlated pairs of bacterial taxa (family Veillonellaceae) and metabolomic features (i.e., amino acids and short-chain fatty acids) responsible for FMT success. Further analysis aimed at establishing criteria for donor selection identified the genus Sporobacter as a potential biomarker in successful donor selection. Low levels of metabolites, such as glycerol 3-phosphate, dihydroxyacetone phosphate, and isoamylamine, in the donor or recipients prior to FMT, are predicted to facilitate FMT. CONCLUSIONS: Overall, we provide the first substantial evidence of the factors related to FMT success or failure; these findings could improve the design of future microbial therapeutics for treating diarrhea in calves. Video abstract.


Assuntos
Diarreia , Transplante de Microbiota Fecal , Animais , Bovinos , Diarreia/microbiologia , Diarreia/terapia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , RNA Ribossômico 16S/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA