Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Assuntos
Coinfecção , Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo
2.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436247

RESUMO

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Assuntos
Proteínas de Resistência a Myxovirus , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Replicação Viral , Animais , Linhagem Celular , Interferons/imunologia , Interferons/metabolismo , Mutação , Proteínas de Resistência a Myxovirus/química , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Síndrome Respiratória e Reprodutiva Suína/enzimologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Suínos/virologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
3.
J Virol ; 96(17): e0061222, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36005757

RESUMO

Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa , Proteases Virais 3C , Animais , Antivirais , Febre Aftosa , Vírus da Febre Aftosa/genética , Interações Hospedeiro-Patógeno , Lisina/metabolismo , Peptídeo Hidrolases/metabolismo , Sumoilação , Replicação Viral
4.
J Virol ; 95(15): e0036121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980594

RESUMO

Foot-and-mouth disease virus (FMDV) is the pathogen of foot-and-mouth disease (FMD), which is a highly contagious disease in cloven-hoofed animals. To survive in the host, FMDV has evolved multiple strategies to antagonize host innate immune responses. In this study, we showed that the leader protease (Lpro) of FMDV, a papain-like proteinase, promoted viral replication by evading the antiviral interferon response through counteracting the 2',5'-oligoadenylate synthetase (OAS)/RNase L system. Specifically, we observed that the titers of Lpro deletion virus were significantly lower than those of wild-type FMDV (FMDV-WT) in cultured cells. Our mechanistic studies demonstrated that Lpro interfered with the OAS/RNase L pathway by interacting with the N-terminal domain of swine RNase L (sRNase L). Remarkably, Lpro of FMDV exhibited species-specific binding to RNase L in that the interaction was observed only in swine cells, not human, monkey, or canine cells. Lastly, we presented evidence that by interacting with sRNase L, FMDV Lpro inhibited cellular apoptosis. Taken together, these results demonstrate a novel mechanism that Lpro utilizes to escape the OAS/RNase L-mediated antiviral defense pathway. IMPORTANCE FMDV is a picornavirus that causes a significant disease in agricultural animals. FMDV has developed diverse strategies to escape the host interferon response. Here, we show that Lpro of FMDV antagonizes the OAS/RNase L pathway, an important interferon effector pathway, by interacting with the N-terminal domain of sRNase L. Interestingly, such a virus-host interaction is species-specific because the interaction is detected only in swine cells, not in human, monkey, or canine cells. Furthermore, Lpro inhibits apoptosis through interacting with sRNase L. This study demonstrates a novel mechanism by which FMDV has evolved to inhibit host innate immune responses.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endopeptidases/metabolismo , Endorribonucleases/metabolismo , Vírus da Febre Aftosa/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Animais , Apoptose/imunologia , Linhagem Celular , Cricetinae , Cães , Endopeptidases/genética , Endopeptidases/imunologia , Endorribonucleases/genética , Febre Aftosa/imunologia , Febre Aftosa/virologia , Células HEK293 , Haplorrinos , Humanos , Evasão da Resposta Imune/genética , Células Madin Darby de Rim Canino , Domínios Proteicos , Suínos
5.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043527

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) blocks host mRNA nuclear export to the cytoplasm, and nonstructural protein 1 beta (nsp1ß) of PRRSV has been identified as the protein that disintegrates the nuclear pore complex. In the present study, the molecular basis for the inhibition of host mRNA nuclear export was investigated. Nucleoporin 62 (Nup62) was found to bind to nsp1ß, and the region representing the C-terminal residues 328 to 522 of Nup62 was determined to be the binding domain for nsp1ß. The nsp1ß L126A mutant in the SAP domain did not bind to Nup62, and in L126A-expressing cells, host mRNA nuclear export occurred normally. The vL126A mutant PRRSV generated by reverse genetics replicated at a lower rate, and the titer was lower than for wild-type virus. In nsp1ß-overexpressing cells or small interfering RNA (siRNA)-mediated Nup62 knockdown cells, viral protein synthesis increased. Notably, the production of type I interferons (IFN-α/ß), IFN-stimulated genes (PKR, OAS, Mx1, and ISG15 genes), IFN-induced proteins with tetratricopeptide repeats (IFITs) 1 and 2, and IFN regulatory factor 3 decreased in these cells. As a consequence, the growth of vL126A mutant PRRSV was rescued to the level of wild-type PRRSV. These findings are attributed to nuclear pore complex (NPC) disintegration by nsp1ß, resulting in increased viral protein production and decreased host protein production, including antiviral proteins in the cytoplasm. Our study reveals a new strategy of PRRSV for immune evasion and enhanced replication during infection.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS and is known to effectively suppress host innate immunity. The PRRSV nsp1ß protein blocks host mRNA nuclear export, which has been shown to be one of the viral mechanisms for inhibition of antiviral protein production. nsp1ß binds to the cellular protein nucleoporin 62 (Nup62), and as a consequence, the nuclear pore complex (NPC) is disintegrated and the nucleocytoplasmic trafficking of host mRNAs and host proteins is blocked. We show the dual benefits of Nup62 and nsp1ß binding for PRRSV replication: the inhibition of host antiviral protein expression and the exclusive use of host translation machinery by the virus. Our study unveils a novel strategy of PRRSV for immune evasion and enhanced replication during infection.


Assuntos
Evasão da Resposta Imune/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas não Estruturais Virais/imunologia , Replicação Viral/imunologia , Animais , Células HeLa , Humanos , Suínos
6.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118255

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida , Suínos , Doenças dos Suínos/patologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187542

RESUMO

Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.


Assuntos
Interações Hospedeiro-Patógeno , Fator Regulador 1 de Interferon/metabolismo , Interferons/imunologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Evasão da Resposta Imune , Masculino , Mutação , Peroxissomos/imunologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Transdução de Sinais , Suínos/virologia , Células Vero
8.
J Virol ; 88(9): 4908-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554650

RESUMO

UNLABELLED: Foot-and-mouth disease virus (FMDV) causes a highly contagious, debilitating disease in cloven-hoofed animals with devastating economic consequences. To survive in the host, FMDV has evolved to antagonize the host type I interferon (IFN) response. Previous studies have reported that the leader proteinase (L(pro)) and 3C(pro) of FMDV are involved in the inhibition of type I IFN production. However, whether the proteins of FMDV can inhibit type I IFN signaling is less well understood. In this study, we first found that 3C(pro) of FMDV functioned to interfere with the JAK-STAT signaling pathway. Expression of 3C(pro) significantly reduced the transcript levels of IFN-stimulated genes (ISGs) and IFN-stimulated response element (ISRE) promoter activity. The protein level, tyrosine phosphorylation of STAT1 and STAT2, and their heterodimerization were not affected. However, the nuclear translocation of STAT1/STAT2 was blocked by the 3C(pro) protein. Further mechanistic studies demonstrated that 3C(pro) induced proteasome- and caspase-independent protein degradation of karyopherin α1 (KPNA1), the nuclear localization signal receptor for tyrosine-phosphorylated STAT1, but not karyopherin α2, α3, or α4. Finally, we showed that the protease activity of 3C(pro) contributed to the degradation of KPNA1 and thus blocked STAT1/STAT2 nuclear translocation. Taken together, results of our experiments describe for the first time a novel mechanism by which FMDV evolves to inhibit IFN signaling and counteract host innate antiviral responses. IMPORTANCE: We show that 3C(pro) of FMDV antagonizes the JAK-STAT signaling pathway by blocking STAT1/STAT2 nuclear translocation. Furthermore, 3C(pro) induces KPNA1 degradation, which is independent of proteasome and caspase pathways. The protease activity of 3C(pro) contributes to the degradation of KPNA1 and governs the ability of 3C(pro) to inhibit the JAK-STAT signaling pathway. This study uncovers a novel mechanism evolved by FMDV to antagonize host innate immune responses.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/imunologia , Interações Hospedeiro-Patógeno , Interferons/antagonistas & inibidores , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT2/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Linhagem Celular , Proteólise , Transdução de Sinais , Suínos , alfa Carioferinas/metabolismo
9.
Virus Res ; 340: 199302, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104946

RESUMO

Tripartite motif (TRIM)-containing proteins are a family of regulatory proteins that can participate in the induction of antiviral cytokines and antagonize viral replication. Promyelocytic leukemia (PML) protein is known as TRIM19 and is a major scaffold protein organizing the PML nuclear bodies (NBs). PML NBs are membrane-less organelles in the nucleus and play a diverse role in maintaining cellular homeostasis including antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV), a member virus of the family Arteriviridae, inhibits type I interferon (IFN) response during infection, and nonstructural protein 1 (nsp1) of the virus has been identified as a potent IFN antagonist. We report that the numbers of PML NBs per nucleus were significantly downregulated during infection of PRRSV. The overexpression of all six isoforms of PML suppressed the PRRSV replication, and conversely, the silencing of PML gene expression enhanced the PRRSV replication. The suppression of PML NBs by the nsp1 protein was common in other member viruses of the family, represented by equine arteritis virus, lactate dehydrogenase elevating virus of mice, and simian hemorrhagic fever virus. Our study unveils a conserved viral strategy in arteriviruses for innate immune evasion.


Assuntos
Arterivirus , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Cavalos , Animais , Camundongos , Arterivirus/genética , Linhagem Celular , Fatores de Transcrição , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas com Motivo Tripartido , Replicação Viral , Antivirais
10.
Front Immunol ; 14: 1172000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138878

RESUMO

Type I interferons (IFNs-α/ß) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.


Assuntos
Interferon Tipo I , Vírus de RNA , Vacinas , Animais , Evasão da Resposta Imune , Antivirais/farmacologia
11.
J Gen Virol ; 93(Pt 6): 1236-1246, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422061

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) infection induces interleukin (IL)-10 production and increased numbers of PRRSV-specific regulatory T-lymphocytes in infected pigs. In the present study, the roles of the nucleocapsid (N) protein in induction of IL-10 and CD4(+)CD25(+)Foxp3(+) lymphocytes (T(reg)) were investigated. Transfection of porcine monocyte-derived dendritic cells (MoDCs) and pulmonary alveolar macrophages (PAMs) with a plasmid encoding N protein resulted in significant upregulation of IL-10 gene expression in the gene-transfected cells. Structural conformation, but not nuclear localization, of the expressed N protein was indicated to be essential for the ability to induce IL-10. Furthermore, the presence of recombinant N proteins in cultured PBMCs increased the number of IL-10-producing lymphocytes. Strong induction of IL-10-producing cells and T(reg) was observed when using N protein-pulsed MoDCs, suggesting an important role of MoDCs in induction of IL-10 and T(reg) by the N protein. Neutralization of IL-10 by addition of an anti-IL-10 antibody in the culture system resulted in marked reduction of PRRSV-induced T(reg) in the cultured PBMCs. Together, the data demonstrate the immunomodulatory properties of the PRRSV N protein and the linkage between IL-10 production and development of PRRSV-induced T(reg). Our results reveal an immunomodulatory function of the PRRSV N protein that may contribute to the unique immunological outcome observed following PRRSV infection.


Assuntos
Interleucina-10/imunologia , Proteínas do Nucleocapsídeo/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T Reguladores/imunologia , Regulação para Cima , Animais , Células Dendríticas/imunologia , Células Dendríticas/virologia , Interleucina-10/genética , Ativação Linfocitária , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Proteínas do Nucleocapsídeo/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos
12.
Virus Genes ; 45(3): 474-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22843314

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) has become one of the most economically important diseases to the global pork industry. Current vaccination strategies only provide a limited protective efficacy. In this study, a DNA vaccine, pVAX1(©)-α-γ-GP35, co-expressing GP3 and GP5 of PRRSV with interferon α/γ was constructed, and its immediate and long-lasting protection against highly pathogenic PRRSV (HP-PRRSV) challenge were examined in pigs. For immediate protection, the results showed that pVAX1(©)-α-γ-GP35 could provide partially protective efficacy, which was similar to the pVAX1(©)-α-γ (expressing interferon α/γ). For long-lasting protection, pigs inoculated with pVAX1(©)-α-γ-GP35 developed significantly higher PRRSV-specific antibody response, T cell proliferation, IFN-γ, and IL-4, than those vaccinated with pVAX1(©)-GP35 (expressing GP3 and GP5 of PRRSV). Following homologous challenge with HP-PRRSV strain SD-JN, pigs inoculated with pVAX1(©)-α-γ-GP35 showed almost no clinical signs, no lung lesions, and significantly lower viremia, as compared to those in pVAX1(©)-GP35 group. It indicated that pVAX1(©)-α-γ-GP35 could induce enhanced immune responses and provide both immediate and long-lasting protection against HP-PRRSV challenge in pigs. The DNA vaccine pVAX1(©)-α-γ-GP35 might be an attractive candidate vaccine for the prevention and control of HP-PRRSV infections.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos , Temperatura Corporal , Proliferação de Células , Genes Virais , Células HEK293 , Humanos , Imunidade Humoral , Interferon gama/imunologia , Interleucina-4/imunologia , Pulmão/patologia , Pulmão/virologia , Testes de Neutralização , Plasmídeos/genética , Plasmídeos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos/imunologia , Suínos/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Vacinação , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia
13.
Sci Rep ; 11(1): 13464, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188167

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19) that emerged in human populations recently. Severely ill COVID-19 patients exhibit the elevation of proinflammatory cytokines, and such an unbalanced production of proinflammatory cytokines is linked to acute respiratory distress syndrome with high mortality in COVID-19 patients. Our study provides evidence that the ORF3a, M, ORF7a, and N proteins of SARS-CoV-2 were NF-κB activators. The viral sequence from infected zoo lions belonged to clade V, and a single mutation of G251V is found for ORF3a gene compared to all other clades. No significant functional difference was found for clade V ORF3a, indicating the NF-κB activation is conserved among COVID-19 variants. Of the four viral proteins, the ORF7a protein induced the NF-κB dictated proinflammatory cytokines including IL-1α, IL-1ß, IL-6, IL-8, IL-10, TNF-α, and IFNß. The ORF7a protein also induced IL-3, IL-4, IL-7, IL-23. Of 15 different chemokines examined in the study, CCL11, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27, and CXCL9 were significantly upregulated by ORF7. These cytokines and chemokines were frequently elevated in severely ill COVID-19 patients. Our data provide an insight into how SARS-CoV-2 modulates NF-κB signaling and inflammatory cytokine expressions. The ORF7a protein may be a desirable target for strategic developments to minimize uncontrolled inflammation in COVID-19 patients.


Assuntos
Citocinas/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , COVID-19/patologia , COVID-19/virologia , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Células HeLa , Humanos , Mutação Puntual , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Índice de Gravidade de Doença , Regulação para Cima , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
14.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916997

RESUMO

Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor-ligand for the control of PRRS.

15.
Transbound Emerg Dis ; 68(3): 1097-1110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32799433

RESUMO

COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has rapidly spread to 216 countries and territories since first outbreak in December of 2019, posing a substantial economic losses and extraordinary threats to the public health worldwide. Although bats have been suggested as the natural host of SARS-CoV-2, transmission chains of this virus, role of animals during cross-species transmission, and future concerns remain unclear. Diverse animal coronaviruses have extensively been studied since the discovery of avian coronavirus in 1930s. The current article comprehensively reviews and discusses the current understanding about animal coronaviruses and SARS-CoV-2 for their emergence, transmission, zoonotic potential, alteration of tissue/host tropism, evolution, status of vaccines and surveillance. This study aims at providing guidance for control of COVID-19 and preventative strategies for possible future outbreaks of zoonotic coronavirus via cross-species transmission.


Assuntos
COVID-19/virologia , Infecções por Coronaviridae/veterinária , Coronavirus/classificação , SARS-CoV-2/genética , Animais , Infecções por Coronaviridae/virologia , Humanos
16.
J Vet Sci ; 21(3): e51, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32476324

RESUMO

A novel coronavirus emerged in human populations and spread rapidly to cause the global coronavirus disease 2019 pandemic. Although the origin of the associated virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) remains unclear, genetic evidence suggests that bats are a reservoir host of the virus, and pangolins are a probable intermediate. SARS-CoV-2 has crossed the species barrier to infect humans and other animal species, and infected humans can facilitate reverse-zoonotic transmission to animals. Considering the rapidly changing interconnections among people, animals, and ecosystems, traditional roles of veterinarians should evolve to include transdisciplinary roles.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Zoonoses/prevenção & controle , Zoonoses/transmissão , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Especificidade de Hospedeiro , Humanos , Saúde Única , SARS-CoV-2 , Médicos Veterinários
17.
Viruses ; 12(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198300

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious viral (PRRSV) disease in pigs characterized by poor reproductive health, increased mortality, and reductions in growth rates. PRRSV is known to implement immuno-antagonistic mechanisms to evade detection and mute host responses to infection. To better understand the cellular immunosignature of PRRSV we have undertaken transcriptome and immunomodulatory studies in PRRSV-infected porcine alveolar macrophages (PAMs). We first used genome-wide transcriptome profiling (RNA-seq) to elucidate PRRSV-induced changes in the PAM transcriptome in response to infection. We found a number of cellular networks were altered by PRRSV infection, including many associated with innate immunity, such as, the NLRP3 inflammasome. To further explore the role(s) of innate immune networks in PRRSV-infected PAMs, we used an NLRP3-specific inhibitor, MCC950, to identify the potential functionality of the inflammasome during PRRSV replication. We found that PRRSV does quickly induce expression of inflammasome-associated genes in PAMs. Treatment of PAMs with MCC950 suggests NLRP3 inflammasome activation negatively impacts viral replication. Treatment of PAMs with cell culture supernatants from macrophages subjected to NLRP3 inflammasome activation (via polyinosinic-polycytidylic acid (poly I:C) transfection), prior to PRRSV infection resulted in significantly reduced viral RNA levels compared to PAMs treated with cell culture supernatants from macrophages subjected to NLRP3 inflammasome inhibition (MCC950 treatment/poly I:C transfection). This further supports a role for NLRP3 inflammasome activation in the innate macrophagic anti-PRRSV immune response and suggests that PRRSV is sensitive to the effects of NLRP3 inflammasome activity. Taken together, these transcriptome and immunoregulatory data highlight the complex changes PRRSV infection induces in the molecular immune networks of its cellular host.


Assuntos
Inflamassomos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Síndrome Respiratória e Reprodutiva Suína/etiologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Perfilação da Expressão Gênica , Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Transdução de Sinais , Suínos , Transcriptoma
18.
J Vet Sci ; 21(2): e38, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32233141

RESUMO

African swine fever (ASF), caused by the ASF virus, a member of the Asfarviridae family, is one of the most important diseases in the swine industry due to its clinical and economic impacts. Since the first report of ASF a century ago, ample information has become available, but prevention and treatment measures are still inadequate. Two waves of epizootic outbreaks have occurred worldwide. While the first wave of the epizootic outbreak was controlled in most of the infected areas, the second wave is currently active in the European and Asian continents, causing severe economic losses to the pig industry. There are different patterns of spreading in the outbreaks between those in European and Asian countries. Prevention and control of ASF are very difficult due to the lack of available vaccines and effective therapeutic measures. However, recent outbreaks in South Korea have been successfully controlled on swine farms, although feral pigs are periodically being found to be positive for the ASF virus. Therefore, we would like to share our story regarding the preparation and application of control measures. The success in controlling ASF on farms in South Korea is largely due to the awareness and education of swine farmers and practitioners, the early detection of infected animals, the implementation of strict control policies by the government, and widespread sharing of information among stakeholders. Based on the experience gained from the outbreaks in South Korea, this review describes the current understanding of the ASF virus and its pathogenic mechanisms, epidemiology, and control.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana , Surtos de Doenças/veterinária , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Criação de Animais Domésticos/educação , Animais , Surtos de Doenças/prevenção & controle , República da Coreia/epidemiologia , Suínos
19.
Virus Res ; 286: 197980, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311386

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Apoptose , Citocinas/imunologia , Humanos , Imunidade Inata , Camundongos , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transdução de Sinais/imunologia , Suínos , Replicação Viral
20.
PeerJ ; 8: e10114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150069

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a leading cause of diarrhea in pigs worldwide. Virus isolation and genetic evolutionary analysis allow investigations into the prevalence of epidemic strains and provide data for the clinical diagnosis and vaccine development. In this study, we investigated the genetic characteristics of PEDV circulation in Asia through virus isolation and comparative genomics analysis. APEDV strain designated HB2018 was isolated from a pig in a farm experiencing a diarrhea outbreak. The complete genome sequence of HB2018 was 28,138 bp in length. Phylogenetic analysis of HB2018 and 207 PEDVs in Asia showed that most PEDV strains circulating in Asia after 2010 belong to genotype GII, particularly GII-a. The PEDV vaccine strain CV777 belonged to GI, and thus, unmatched genotypes between CV777 and GII-a variants might partially explain incomplete protection by the CV777-derived vaccine against PEDV variants in China. In addition, we found the S protein of variant strains contained numerous mutations compared to the S protein of CV777, and these mutations occurred in the N-terminal domain of the S protein. These mutations may influence the antigenicity, pathogenicity, and neutralization properties of the variant strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA