RESUMO
Soybean is an important crop and a source of food for humans and livestock. In this study, for the first time, the long-term effects of zinc oxide (ZnO) nanoparticles on the growth, development, and reproduction of soybean [Glycine max (L.) Merrill] were evaluated in a standard soil microcosm study. The soil was treated with 0, 50, or 500 mg/kg (dry weight) of ZnO nanoparticles. The growth and development of soybean plants were tracked during a cultivation period of 8-9 weeks under greenhouse conditions. Soybean development was damaged in both treatment groups, particularly in the group that received 500 mg/kg ZnO nanoparticles. In comparison with the control group, the roots and shoots of soybeans in treatment groups were shorter and had smaller surface area and volume. Furthermore, the plants in the 500 mg/kg treatment group did not form seeds. ZnO nanoparticles negatively affected the developmental stages and reproduction of soybean plants in a soil microcosm.
Assuntos
Glycine max/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimentoRESUMO
Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment.
Assuntos
Chlamydomonas reinhardtii/química , Daphnia/química , Euglena gracilis/química , Ouro/análise , Nanopartículas/análise , Animais , Cadeia AlimentarRESUMO
Gold nanoparticles (Au-NPs) are used in many applications, including the manufacture of products like cosmetics, paints, and electrochemical immunosensors, and in the detection, diagnosis, and treatment of tumors. However, there are no legal or recommended guidelines for protecting aquatic ecosystems from Au-NPs. In this study, we conducted a battery of bioassays and present toxicity values for two bacteria, one alga, one euglena, three cladoceran, and two fish species that were exposed to Au-NPs. Guideline values for protecting aquatic ecosystems from Au-NPs were derived using methods that are generally used to derive water-quality guidelines and are used in Australia, New Zealand, Canada, the European Community (EC), and the USA. Au-NPs had adverse effects on all test species, including growth inhibition of both bacteria, the alga, and the euglena; mortality and immobilization in the three cladocerans; and developmental malformations in the embryos and larvae of the two fish. Guideline values of 0.15 and 0.04 × 10(10) particles/mL were derived for Au-NPs using a species sensitivity distribution (SSD) and assessment factor. The guideline value derived for Au-NPs using an assessment factor was more stringent than that derived using SSD. This is the first study to derive guideline values for nanoparticles in water environments.
Assuntos
Bioensaio , Ecossistema , Água Doce , Ouro/química , Guias como Assunto , Nanopartículas Metálicas/toxicidade , Água do Mar , Animais , Peixes , Insetos , Nanopartículas Metálicas/química , Microbiologia da ÁguaRESUMO
This study focused on estimating the toxicity values of various aquatic organisms exposed to gold (III) ion (Au(3+)), and to propose maximum guideline values for Au(3+) toxicity that protect the aquatic ecosystem. A comparative assessment of methods developed in Australia and New Zealand versus the European Community (EC) was conducted. The test species used in this study included two bacteria (Escherichia coli and Bacillus subtilis), one alga (Pseudokirchneriella subcapitata), one euglena (Euglena gracilis), three cladocerans (Daphnia magna, Moina macrocopa, and Simocephalus mixtus), and two fish (Danio rerio and Oryzias latipes). Au(3+) induced growth inhibition, mortality, immobilization, and/or developmental malformations in all test species, with responses being concentration-dependent. According to the moderate reliability method of Australia and New Zealand, 0.006 and 0.075 mg/L of guideline values for Au(3+) were obtained by dividing 0.33 and 4.46 mg/L of HC5 and HC50 species sensitivity distributions (SSD) with an FACR (Final Acute to Chronic Ratio) of 59.09. In contrast, the EC method uses an assessment factor (AF), with the 0.0006 mg/L guideline value for Au(3+) being divided with the 48-h EC50 value for 0.60 mg/L (the lowest toxicity value obtained from short term results) by an AF of 1000. The Au(3+) guideline value derived using an AF was more stringent than the SSD. We recommend that more toxicity data using various bioassays are required to develop more accurate ecological risk assessments. More chronic/long-term exposure studies on sensitive endpoints using additional fish species and invertebrates not included in the current dataset will be needed to use other derivation methods (e.g., US EPA and Canadian Type A) or the "High Reliability Method" from Australia/New Zealand. Such research would facilitate the establishment of guideline values for various pollutants that reflect the universal effects of various pollutants in aquatic ecosystems. To the best of our knowledge, this is the first study to suggest guideline values for Au(3+) levels permitted to enter freshwater environments.