Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nucleic Acids Res ; 52(5): 2306-2322, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142439

RESUMO

Spermatogonial stem cells functionality reside in the slow-cycling and heterogeneous undifferentiated spermatogonia cell population. This pool of cells supports lifelong fertility in adult males by balancing self-renewal and differentiation to produce haploid gametes. However, the molecular mechanisms underpinning long-term stemness of undifferentiated spermatogonia during adulthood remain unclear. Here, we discover that an epigenetic regulator, Polycomb repressive complex 1 (PRC1), shields adult undifferentiated spermatogonia from differentiation, maintains slow cycling, and directs commitment to differentiation during steady-state spermatogenesis in adults. We show that PRC2-mediated H3K27me3 is an epigenetic hallmark of adult undifferentiated spermatogonia. Indeed, spermatogonial differentiation is accompanied by a global loss of H3K27me3. Disruption of PRC1 impairs global H3K27me3 deposition, leading to precocious spermatogonial differentiation. Therefore, PRC1 directs PRC2-H3K27me3 deposition to maintain the self-renewing state of undifferentiated spermatogonia. Importantly, in contrast to its role in other tissue stem cells, PRC1 negatively regulates the cell cycle to maintain slow cycling of undifferentiated spermatogonia. Our findings have implications for how epigenetic regulators can be tuned to regulate the stem cell potential, cell cycle and differentiation to ensure lifelong fertility in adult males.


Assuntos
Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Espermatogênese , Células-Tronco , Humanos , Masculino , Diferenciação Celular , Histonas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Espermatogônias , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Camundongos , Feminino , Complexo Repressor Polycomb 2/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(20): e2219683120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155904

RESUMO

During mouse gametogenesis, germ cells derived from the same progenitor are connected via intercellular bridges forming germline cysts, within which asymmetrical or symmetrical cell fate occurs in female and male germ cells, respectively. Here, we have identified branched cyst structures in mice, and investigated their formation and function in oocyte determination. In fetal female cysts, 16.8% of the germ cells are connected by three or four bridges, namely branching germ cells. These germ cells are preferentially protected from cell death and cyst fragmentation and accumulate cytoplasm and organelles from sister germ cells to become primary oocytes. Changes in cyst structure and differential cell volumes among cyst germ cells suggest that cytoplasmic transport in germline cysts is conducted in a directional manner, in which cellular content is first transported locally between peripheral germ cells and further enriched in branching germ cells, a process causing selective germ cell loss in cysts. Cyst fragmentation occurs extensively in female cysts, but not in male cysts. Male cysts in fetal and adult testes have branched cyst structures, without differential cell fates between germ cells. During fetal cyst formation, E-cadherin (E-cad) junctions between germ cells position intercellular bridges to form branched cysts. Disrupted junction formation in E-cad-depleted cysts led to an altered ratio in branched cysts. Germ cell-specific E-cad knockout resulted in reductions in primary oocyte number and oocyte size. These findings shed light on how oocyte fate is determined within mouse germline cysts.


Assuntos
Cistos , Oócitos , Masculino , Feminino , Animais , Camundongos , Células Germinativas , Citoplasma , Organelas , Gametogênese , Oogênese
3.
Development ; 146(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651295

RESUMO

Cell morphology changes dynamically during embryogenesis, and these changes create new interactions with surrounding cells, some of which are presumably mediated by intercellular signaling. However, the effects of morphological changes on intercellular signaling remain to be fully elucidated. In this study, we examined the effect of morphological changes in Wnt-producing cells on intercellular signaling in the spinal cord. After mid-gestation, roof-plate cells stretched along the dorsoventral axis in the mouse spinal cord, resulting in new contact at their tips with the ependymal cells that surround the central canal. Wnt1 and Wnt3a were produced by the stretched roof-plate cells and delivered to the cell process tip. Whereas Wnt signaling was activated in developing ependymal cells, Wnt activation in dorsal ependymal cells, which were close to the stretched roof plate, was significantly suppressed in embryos with roof plate-specific conditional knockout of Wls, which encodes a factor that is essential for Wnt secretion. Furthermore, proliferation of these cells was impaired in Wls conditional knockout mice during development and after induced spinal cord injury in adults. Therefore, morphological changes in Wnt-producing cells appear to generate new Wnt signal targets.


Assuntos
Medula Espinal/patologia , Proteínas Wnt/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/patologia , Epêndima/embriologia , Epêndima/patologia , Feminino , Ligantes , Camundongos Knockout , Morfogênese , Gravidez , Transdução de Sinais , Medula Espinal/embriologia , Traumatismos da Medula Espinal/embriologia , Traumatismos da Medula Espinal/patologia
4.
PLoS Biol ; 16(9): e2004874, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30256801

RESUMO

Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Fertilidade , Células de Sertoli/metabolismo , Espermatogênese , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Adesão Celular , Células Cultivadas , Forminas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimerização , Túbulos Seminíferos/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo
5.
Development ; 142(9): 1582-92, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25858458

RESUMO

Stem cells ensure tissue homeostasis through the production of differentiating and self-renewing progeny. In some tissues, this is achieved by the function of a definitive stem cell niche. However, the mechanisms that operate in mouse spermatogenesis are unknown because undifferentiated spermatogonia (Aundiff) are motile and intermingle with differentiating cells in an 'open' niche environment of seminiferous tubules. Aundiff include glial cell line-derived neurotrophic factor receptor α1 (GFRα1)(+) and neurogenin 3 (NGN3)(+) subpopulations, both of which retain the ability to self-renew. However, whereas GFRα1(+) cells comprise the homeostatic stem cell pool, NGN3(+) cells show a higher probability to differentiate into KIT(+) spermatogonia by as yet unknown mechanisms. In the present study, by combining fate analysis of pulse-labeled cells and a model of vitamin A deficiency, we demonstrate that retinoic acid (RA), which may periodically increase in concentration in the tubules during the seminiferous epithelial cycle, induced only NGN3(+) cells to differentiate. Comparison of gene expression revealed that retinoic acid receptor γ (Rarg) was predominantly expressed in NGN3(+) cells, but not in GFRα1(+) cells, whereas the expression levels of many other RA response-related genes were similar in the two populations. Ectopic expression of RARγ was sufficient to induce GFRα1(+) cells to directly differentiate to KIT(+) cells without transiting the NGN3(+) state. Therefore, RARγ plays key roles in the differentiation competence of NGN3(+) cells. We propose a novel mechanism of stem cell fate selection in an open niche environment whereby undifferentiated cells show heterogeneous competence to differentiate in response to ubiquitously distributed differentiation-inducing signals.


Assuntos
Diferenciação Celular/fisiologia , Espermatogênese/fisiologia , Células-Tronco/fisiologia , Tretinoína/farmacologia , Deficiência de Vitamina A/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Imunofluorescência , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/metabolismo , Receptor gama de Ácido Retinoico
6.
Dev Growth Differ ; 60(9): 542-552, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30443901

RESUMO

In mammalian testes, robust stem cell functions ensure the continual production of sperm. In testicular seminiferous tubules, spermatogenic stem cells (SSCs) are highly motile and are interspersed between their differentiating progeny, while undergoing self-renewal and differentiation. In such an "open niche" microenvironment, some SSCs proliferate, while others exit the stem cell compartment through differentiation; therefore, self-renewal and differentiation are perfectly balanced at the population (or tissue) level, a dynamics termed "population asymmetry." This is in stark contrast to the classical perception of tissue stem cells being cells that are clustered in a specialized "closed niche" region and that invariantly undergo asymmetric divisions. However, despite its importance, how the self-renewal and differentiation of SSCs are balanced in an open niche environment is poorly understood. Recent studies have thrown light on the key mechanism that enables SSCs to follow heterogeneous fates, although they are equally exposed to signaling molecules controlling self-renewal and differentiation. In particular, SSCs show heterogeneous susceptibilities to differentiation-promoting signals such as Wnt and retinoic acid. Heterogeneous susceptibility to the ubiquitously distributed fate-controlling extracellular signal might be a key generic mechanism for the heterogeneous fate of tissue stem cells in open niche microenvironments.


Assuntos
Espermatogênese/fisiologia , Espermatozoides/fisiologia , Nicho de Células-Tronco , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Autorrenovação Celular/fisiologia , Masculino , Camundongos , Testículo/citologia
7.
Development ; 140(17): 3565-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23903187

RESUMO

Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis. We have exploited a property of incomplete cytokinesis, which causes male germ cells to form aligned chains of characteristic lengths, as they divide and differentiate. These chains revealed the stage of spermatogenesis, so the epigenetic differences of various stages could be characterized. Single, paired and medium chain-length spermatogonia not expressing Kit (a marker of differentiating spermatogonia) showed no expression of Dnmt3a2 and Dnmt3b (two de novo DNA methyltransferases); they also lacked the transcriptionally repressive histone modification H3K9me2. By contrast, spermatogonia consisting of ~8-16 chained cells with Kit expression dramatically upregulated Dnmt3a2/3b expression and also displayed increased H3K9me2 modification. To explore the function of these epigenetic changes in spermatogonia in vivo, the DNA methylation machinery was destabilized by ectopic Dnmt3b expression or Np95 ablation. Forced Dnmt3b expression induced expression of Kit; whereas ablation of Np95, which is essential for maintaining DNA methylation, interfered with differentiation and viability only after spermatogonia become Kit positive. These data suggest that the epigenetic status of spermatogonia shifts dramatically during the Kit-negative to Kit-positive transition. This shift might serve as a switch that determines whether spermatogonia self-renew or differentiate.


Assuntos
Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Células Germinativas/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatogênese/fisiologia , Espermatogônias/crescimento & desenvolvimento , Animais , Western Blotting , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/fisiologia , Primers do DNA/genética , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Espermatogônias/citologia , DNA Metiltransferase 3B
8.
Proc Natl Acad Sci U S A ; 109(42): 16934-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22984182

RESUMO

Male infertility is most commonly caused by spermatogenic defects or insufficiencies, the majority of which are as yet cureless. Recently, we succeeded in cultivating mouse testicular tissues for producing fertile sperm from spermatogonial stem cells. Here, we show that one of the most severe types of spermatogenic defect mutant can be treated by the culture method without any genetic manipulations. The Sl/Sl(d) mouse is used as a model of such male infertility. The testis of the Sl/Sl(d) mouse has only primitive spermatogonia as germ cells, lacking any sign of spermatogenesis owing to mutations of the c-kit ligand (KITL) gene that cause the loss of membrane-bound-type KITL from the surface of Sertoli cells. To compensate for the deficit, we cultured testis tissues of Sl/Sl(d) mice with a medium containing recombinant KITL and found that it induced the differentiation of spermatogonia up to the end of meiosis. We further discovered that colony stimulating factor-1 (CSF-1) enhances the effect of KITL and promotes spermatogenesis up to the production of sperm. Microinsemination of haploid cells resulted in delivery of healthy offspring. This study demonstrated that spermatogenic impairments can be treated in vitro with the supplementation of certain factors or substances that are insufficient in the original testes.


Assuntos
Infertilidade Masculina/terapia , Proteínas Recombinantes/genética , Espermatogênese/genética , Fator de Células-Tronco/genética , Testículo/citologia , Animais , Técnicas de Cultura de Células , Infertilidade Masculina/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Proteínas Recombinantes/farmacologia , Células de Sertoli/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Espermatogônias/fisiologia , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia , Testículo/fisiologia
9.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727278

RESUMO

Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.


Assuntos
Espermatogônias , Humanos , Animais , Masculino , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Diferenciação Celular/genética , Espermatogênese/genética , Transcriptoma/genética , Adulto , Camundongos , Feto/citologia , Testículo/citologia , Testículo/metabolismo , Roedores , Ratos , Análise de Célula Única
11.
Proc Natl Acad Sci U S A ; 107(34): 15264-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20679218

RESUMO

It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) mRNA in the paraventricular organ (PVO), an area long believed to be capable of phototransduction. Immunohistochemistry identified Opsin 5 in neurons that contact the cerebrospinal fluid in the PVO, as well as fibers extending to the external zone of the median eminence adjacent to the pars tuberalis of the pituitary gland, which translates photoperiodic information into neuroendocrine responses. Heterologous expression of Opsin 5 in Xenopus oocytes resulted in light-dependent activation of membrane currents, the action spectrum of which showed peak sensitivity (lambda(max)) at approximately 420 nm. We also found that short-wavelength light, i.e., between UV-B and blue light, induced photoperiodic responses in eye-patched, pinealectomized quail. Thus, Opsin 5 appears to be one of the deep brain photoreceptive molecules that regulates seasonal reproduction in birds.


Assuntos
Proteínas Aviárias/fisiologia , Encéfalo/fisiologia , Coturnix/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Opsinas/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Encéfalo/anatomia & histologia , Coturnix/anatomia & histologia , Coturnix/genética , Feminino , Técnicas In Vitro , Masculino , Eminência Mediana/anatomia & histologia , Eminência Mediana/fisiologia , Modelos Neurológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Oócitos/metabolismo , Opsinas/genética , Núcleo Hipotalâmico Paraventricular/anatomia & histologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Estimulação Luminosa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testículo/crescimento & desenvolvimento , Xenopus laevis
12.
Dev Cell ; 12(2): 195-206, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17276338

RESUMO

To clarify the mechanisms that support the continuity of actively cycling tissues of long-lived organisms, we investigated the composition of a mouse spermatogenic stem cell system by pulse-chase of the undifferentiated spermatogonia, the population responsible for stem cell functions, in combination with transplantation and regeneration assays after pulse-labeling. We demonstrate that in addition to "actual stem cells," which are indeed self-renewing, a second population ("potential stem cells") also exists, which is capable of self-renewing but do not self-renew in the normal situation. Potential stem cells rapidly turn over in normal testes, suggesting that they belong to the transit-amplifying, rather than the dormant, population. During the long natural course, actual stem cells are occasionally lost and compensated for by progeny of their neighbors. In this process, potential stem cells are postulated to shift their modes from transit amplification to self-renewal, thus playing an essential role to ensure spermatogenesis integrity.


Assuntos
Compartimento Celular , Espermatogênese/fisiologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Ensaio de Unidades Formadoras de Colônias , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regeneração , Espermatogônias/citologia , Tamoxifeno/metabolismo , Testículo/citologia , Testículo/fisiologia , Testículo/transplante , Fatores de Tempo
13.
Reproduction ; 144(3): 293-302, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733803

RESUMO

Spermatogenesis in mice and other mammalians is supported by a robust stem cell system. Stem cells maintain themselves and continue to produce progeny that will differentiate into sperm over a long period. The pioneering studies conducted from the 1950s to the 1970s, which were based largely on extensive morphological analyses, have established the fundamentals of mammalian spermatogenesis and its stem cells. The prevailing so-called A(single) (A(s)) model, which was originally established in 1971, proposes that singly isolated A(s) spermatogonia are in fact the stem cells. In 1994, the first functional stem cell assay was established based on the formation of repopulating colonies after transplantation in germ cell-depleted host testes, which substantially accelerated the understanding of spermatogenic stem cells. However, because testicular tissues are dissociated into single-cell suspension before transplantation, it was impossible to evaluate the A(s) and other classical models solely by this technique. From 2007 onwards, functional assessment of stem cells without destroying the tissue architecture has become feasible by means of pulse-labeling and live-imaging strategies. Results obtained from these experiments have been challenging the classical thought of stem cells, in which stem cells are a limited number of specialized cells undergoing asymmetric division to produce one self-renewing and one differentiating daughter cells. In contrast, the emerging data suggest that an extended and heterogeneous population of cells exhibiting different degrees of self-renewing and differentiating probabilities forms a reversible, flexible, and stochastic stem cell system as a population. These features may lead to establishment of a more universal principle on stem cells that is shared by other systems.


Assuntos
Camundongos , Espermatogênese , Células-Tronco , Testículo/citologia , Animais , Diferenciação Celular , Divisão Celular , Masculino , Camundongos/anatomia & histologia , Espermatogônias/citologia , Espermatogônias/transplante , Células-Tronco/citologia
14.
Genes Genet Syst ; 97(1): 15-25, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35125370

RESUMO

Continuity of spermatogenesis in mammals is underpinned by spermatogenic (also called spermatogonial) stem cells (SSCs) that self-renew and differentiate into sperm that pass on genetic information to the next generation. Despite the fundamental role of SSCs, the mechanisms underlying SSC homeostasis are only partly understood. During homeostasis, the stem cell pool remains constant while differentiating cells are continually produced to replenish the lost differentiated cells. One of the outstanding questions here is how self-renewal and differentiation of SSCs are balanced to achieve a constant self-renewing pool. In this review, we shed light on the regulatory mechanism of SSC homeostasis, with focus on the recently proposed mitogen competition model in a facultative (or open) niche microenvironment.


Assuntos
Células-Tronco Germinativas Adultas , Mitógenos , Células-Tronco Germinativas Adultas/fisiologia , Animais , Diferenciação Celular , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mamíferos , Espermatogênese/genética , Espermatogônias , Células-Tronco/fisiologia
15.
Commun Biol ; 5(1): 504, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618762

RESUMO

Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Animais , DNA , Temperatura Alta , Masculino , Mamíferos/genética , Camundongos , Espermatogênese/genética , Temperatura
16.
Cell Stem Cell ; 28(8): 1443-1456.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848470

RESUMO

A remarkable feature of tissue stem cells is their ability to regenerate the structure and function of host tissue following transplantation. However, the dynamics of donor stem cells during regeneration remains largely unknown. Here we conducted quantitative clonal fate studies of transplanted mouse spermatogonial stem cells in host seminiferous tubules. We found that, after a large population of donor spermatogonia settle in host testes, through stochastic fate choice, only a small fraction persist and regenerate over the long term, and the rest are lost through differentiation and cell death. Further, based on these insights, we showed how repopulation efficiency can be increased to a level where the fertility of infertile hosts is restored by transiently suppressing differentiation using a chemical inhibitor of retinoic acid synthesis. These findings unlock a range of potential applications of spermatogonial transplantation, from fertility restoration in individuals with cancer to conservation of biological diversity.


Assuntos
Espermatogênese , Espermatogônias , Animais , Diferenciação Celular , Fertilidade , Masculino , Camundongos , Testículo
17.
J Vis Exp ; (167)2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33522502

RESUMO

Isolation of meiotic spermatocytes is essential to investigate molecular mechanisms underlying meiosis and spermatogenesis. Although there are established cell isolation protocols using Hoechst 33342 staining in combination with fluorescence-activated cell sorting, it requires cell sorters equipped with an ultraviolet laser. Here we describe a cell isolation protocol using the DyeCycle Violet (DCV) stain, a low cytotoxicity DNA binding dye structurally similar to Hoechst 33342. DCV can be excited by both ultraviolet and violet lasers, which improves the flexibility of equipment choice, including a cell sorter not equipped with an ultraviolet laser. Using this protocol, one can isolate three live-cell subpopulations in meiotic prophase I, including leptotene/zygotene, pachytene, and diplotene spermatocytes, as well as post-meiotic round spermatids. We also describe a protocol to prepare single-cell suspension from mouse testes. Overall, the procedure requires a short time to complete (4-5 hours depending on the number of needed cells), which facilitates many downstream applications.


Assuntos
Permeabilidade da Membrana Celular , Separação Celular/métodos , DNA/metabolismo , Espermatócitos/citologia , Espermatogênese , Animais , Benzimidazóis/metabolismo , Sobrevivência Celular , Dissecação , Citometria de Fluxo , Fluorescência , Masculino , Meiose , Camundongos , Estágio Paquíteno , Espalhamento de Radiação , Espermátides/citologia , Coloração e Rotulagem , Testículo/citologia
18.
Cell Rep ; 37(3): 109875, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686326

RESUMO

In mouse testis, a heterogeneous population of undifferentiated spermatogonia (Aundiff) harbors spermatogenic stem cell (SSC) potential. Although GFRα1+ Aundiff maintains the self-renewing pool in homeostasis, the functional basis of heterogeneity and the implications for their dynamics remain unresolved. Here, through quantitative lineage tracing of SSC subpopulations, we show that an ensemble of heterogeneous states of SSCs supports homeostatic, persistent spermatogenesis. Such heterogeneity is maintained robustly through stochastic interconversion of SSCs between a renewal-biased Plvap+/GFRα1+ state and a differentiation-primed Sox3+/GFRα1+ state. In this framework, stem cell commitment occurs not directly but gradually through entry into licensed but uncommitted states. Further, Plvap+/GFRα1+ cells divide slowly, in synchrony with the seminiferous epithelial cycle, while Sox3+/GFRα1+ cells divide much faster. Such differential cell-cycle dynamics reduces mitotic load, and thereby the potential to acquire harmful de novo mutations of the self-renewing pool, while keeping the SSC density high over the testicular open niche.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Linhagem da Célula , Espermatogênese , Testículo/fisiologia , Células-Tronco Germinativas Adultas/metabolismo , Animais , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitose , Modelos Biológicos , Fenótipo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Tempo
19.
Elife ; 102021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973520

RESUMO

The male germ cells must adopt the correct morphology at each differentiation stage for proper spermatogenesis. The spermatogonia regulates its differentiation state by its own migration. The male germ cells differentiate and mature with the formation of syncytia, failure of forming the appropriate syncytia results in the arrest at the spermatocyte stage. However, the detailed molecular mechanisms of male germ cell morphological regulation are unknown. Here, we found that EXOC1, a member of the Exocyst complex, is important for the pseudopod formation of spermatogonia and spermatocyte syncytia in mice. EXOC1 contributes to the pseudopod formation of spermatogonia by inactivating the Rho family small GTPase Rac1 and also functions in the spermatocyte syncytia with the SNARE proteins STX2 and SNAP23. Since EXOC1 is known to bind to several cell morphogenesis factors, this study is expected to be the starting point for the discovery of many morphological regulators of male germ cells.


Assuntos
Espermatócitos/fisiologia , Espermatogênese/genética , Espermatogônias/fisiologia , Proteínas de Transporte Vesicular/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Gigantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogônias/citologia , Proteínas de Transporte Vesicular/metabolismo
20.
Dev Biol ; 336(2): 222-31, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19818747

RESUMO

Spermatogonial stem cells (SSCs) reside in undifferentiated type-A spermatogonia and contribute to continuous spermatogenesis by maintaining the balance between self-renewal and differentiation, thereby meeting the biological demand in the testis. Spermatogonia have to date been characterized principally through their morphology, but we herein report the detailed characterization of undifferentiated spermatogonia in mouse testes based on their gene expression profiles in combination with topological features. The detection of the germ cell-specific proteins Nanos2 and Nanos3 as markers of spermatogonia has enabled the clear dissection of complex populations of these cells as Nanos2 was recently shown to be involved in the maintenance of stem cells. Nanos2 is found to be almost exclusively expressed in A(s) to A(pr) cells, whereas Nanos3 is detectable in most undifferentiated spermatogonia (A(s) to A(al)) and differentiating A(1) spermatogonia. In our present study, we find that A(s) and A(pr) can be basically classified into three categories: (1) GFRalpha1(+)Nanos2(+)Nanos3(-)Ngn3(-), (2) GFRalpha1(+)Nanos2(+)Nanos3(+)Ngn3(-), and (3) GFRalpha1(-)Nanos2(+/-)Nanos3(+)Ngn3(+). We propose that the first of these groups is most likely to include the stem cell population and that Nanos3 may function in transit amplifying cells.


Assuntos
Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Animais , Sequência de Bases , Primers do DNA , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA