Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 50(13): 7224-7234, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801870

RESUMO

Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Oligonucleotídeos Antissenso , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/toxicidade
2.
J Org Chem ; 88(1): 154-162, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520114

RESUMO

Naturally occurring 5-hydroxycytosine (5-OHCyt), which is associated with DNA damage, was recently found to reduce the hepatotoxicity of antisense oligonucleotides (ASOs) without compromising its antisense activity when used as a replacement for cytosine (Cyt). Additionally, sugar-modified nucleic acids, such as 2'-O-methylribonucleic acid (2'-OMe-RNA) and 2'-O,4'-C-spirocyclopropylene-bridged nucleic acid (scpBNA), have emerged as useful antisense materials. Herein, we aimed to combine these two advantages by designing dual modified nucleic acids 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt bearing the 5-OHCyt nucleobase to develop efficient and safe ASOs. We describe the synthesis of 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt phosphoramidites and their incorporation into oligonucleotides (ONs). The duplex-forming ability and base discrimination properties of 2'-OMe-RNA-5-OHCyt- and scpBNA-5-OHCyt-modified ONs were similar to those of 2'-OMe-RNA-Cyt- and scpBNA-mCyt-modified ONs, respectively. We also synthesized two 2'-OMe-RNA-5-OHCyt-modified ASOs, and one of the two was found to exhibit reduced hepatotoxicity while retaining target mRNA knockdown activity in in vivo experiments.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Nucleicos , Humanos , RNA/metabolismo , Açúcares , Açúcares Ácidos , Oligonucleotídeos , Oligonucleotídeos Antissenso , Citosina
3.
Genes Cells ; 24(12): 827-835, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31637814

RESUMO

Antisense oligonucleotide (ASO) has the potential to induce off-target effects due to complementary binding between the ASO and unintended RNA with a sequence similar to the target RNA. Conventional animal studies cannot be used to assess toxicity induced by off-target effects because of differences in the genome sequence between humans and other animals. Consequently, the assessment of off-target effects with in silico analysis using a human RNA database and/or in vitro expression analysis using human cells has been proposed. Our previous study showed that the number of complementary regions of ASOs with mismatches in the human RNA sequences increases dramatically as the number of tolerated mismatches increases. However, to what extent the expression of genes with mismatches is affected by off-target effects at the cellular level is not clear. In this study, we evaluated off-target effects of gapmer ASOs, which cleave the target RNA in an RNase H-dependent manner, by introducing the ASO into human cells and performing microarray analysis. Our data indicate that gapmer ASOs induce off-target effects depending on the degree of complementarity between the ASO and off-target candidate genes. Based on our results, we also propose a scheme for the assessment of off-target effects of gapmer ASOs.


Assuntos
Pareamento Incorreto de Bases , Pareamento de Bases , Oligonucleotídeos Antissenso/química , Algoritmos , Linhagem Celular Tumoral , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , RNA/química , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
4.
Genes Cells ; 23(6): 448-455, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29667281

RESUMO

Antisense oligonucleotide (ASO) therapeutics are single-stranded oligonucleotides which bind to RNA through sequence-specific Watson-Crick base pairings. A unique mechanism of toxicity for ASOs is hybridization-dependent off-target effects that can potentially occur due to the binding of ASOs to complementary regions of unintended RNAs. To reduce the off-target effects of ASOs, it would be useful to know the approximate number of complementary regions of ASOs, or off-target candidate sites of ASOs, of a given oligonucleotide length and complementarity with their target RNAs. However, the theoretical number of complementary regions with mismatches has not been reported to date. In this study, we estimated the general number of complementary regions of ASOs with mismatches in human mRNA sequences by mathematical calculation and in silico analysis using several thousand hypothetical ASOs. By comparing the theoretical number of complementary regions estimated by mathematical calculation to the actual number obtained by in silico analysis, we found that the number of complementary regions of ASOs could be broadly estimated by the theoretical number calculated mathematically. Our analysis showed that the number of complementary regions increases dramatically as the number of tolerated mismatches increases, highlighting the need for expression analysis of such genes to assess the safety of ASOs.


Assuntos
Marcação de Genes/métodos , Genoma Humano , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Sítios de Ligação , Simulação por Computador , Humanos , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética
5.
Genes Cells ; 22(3): 265-276, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28151579

RESUMO

In eukaryotes, the Mediator complex has important roles in regulation of transcription by RNA polymerase II. Mediator is a large complex with more than 20 subunits that form head, middle, tail and CDK/cyclin modules. Among them, CDK8 and/or CDK19 (CDK8/19), and their counterpart cyclin C, form the CDK/cyclin module together with Mediator subunits MED12 and MED13. Despite evidences of both activation and repression, the precise functional roles of CDK8/19 in transcription are still elusive. Our previous results indicate that CDK8/19 recruits epigenetic regulators to repress immunoresponse genes. Here, this study focused on Toll-like receptors (TLRs), which exert innate immune responses through recognition of pathogen-associated molecular patterns and examined the functional roles of CDK8/19. As a result, CDK8/19 regulated transcription of inflammatory genes on stimulation of TLR9 in myeloma-derived RPMI8226 cells, which led to expression of inflammation-associated genes such as IL8, IL10, PTX3 and CCL2. Mediator subunits CDK8/19 and MED1, inflammation-related transcriptional activator NF-κB and C/EBPß, and general transcription factors TFIIE and TFIIB colocalized at the promoter regions of these genes under this condition. Our results show that CDK8/19 positively regulates inflammatory gene transcription in cooperation with NF-κB and C/EBPß on stimulation of TLR9.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Quinase 8 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/fisiologia , NF-kappa B/metabolismo , Receptor Toll-Like 9/fisiologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Ativação Transcricional
6.
Biol Pharm Bull ; 40(5): 726-728, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458361

RESUMO

We previously reported that unmodified silica nanoparticles with diameters of 70 nm (nSP70) induced liver damage in mice, whereas nSP70 modified with carboxyl or amino groups did not. In addition, we have found that both unmodified and modified nSP70s localize in both Kupffer cells and parenchymal hepatocytes. We therefore evaluated the contributions of nSP70 uptake by these cell populations to liver damage. To this end, we pretreated mice with gadolinium (III) chloride hydrate (GdCl3) to prevent nSP70 uptake by Kupffer cells, subsequently injected the mice with either type of nSP70, and then assessed plasma levels of alanine aminotransferase (ALT). In mice given GdCl3, unmodified nSP70 increased ALT levels. From these data, we hypothesized that in GdCl3-treated mice, the unmodified nSP70 that was prevented from entering Kupffer cells was shunted to parenchymal hepatocytes, where it induced cytotoxicity and increased liver damage. In contrast, GdCl3 pretreatment had no effect on ALT levels in mice injected with surface-modified nSP70s, suggesting that modified nSP70s spared parenchymal hepatocytes and thus induced negligible liver damage. In cytotoxicity analyses, the viability of a parenchymal hepatocyte line was greater when exposed to surface-modified nSP70s than to unmodified nSP70s. These findings imply that the decreased liver damage associated with surface-modified compared with unmodified nSP70 is attributable to decreased cytotoxicity to parenchymal hepatocytes.


Assuntos
Aminas/química , Ácidos Carboxílicos/química , Nanopartículas/química , Dióxido de Silício/química , Alanina Transaminase/análise , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Gadolínio/química , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Testes de Função Hepática , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Tamanho da Partícula , Dióxido de Silício/toxicidade , Propriedades de Superfície
7.
Nucleic Acids Res ; 42(12): 8174-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935206

RESUMO

Antisense-mediated modulation of pre-mRNA splicing is an attractive therapeutic strategy for genetic diseases. Currently, there are few examples of modulation of pre-mRNA splicing using locked nucleic acid (LNA) antisense oligonucleotides, and, in particular, no systematic study has addressed the optimal design of LNA-based splice-switching oligonucleotides (LNA SSOs). Here, we designed a series of LNA SSOs complementary to the human dystrophin exon 58 sequence and evaluated their ability to induce exon skipping in vitro using reverse transcription-polymerase chain reaction. We demonstrated that the number of LNAs in the SSO sequence and the melting temperature of the SSOs play important roles in inducing exon skipping and seem to be key factors for designing efficient LNA SSOs. LNA SSO length was an important determinant of activity: a 13-mer with six LNA modifications had the highest efficacy, and a 7-mer was the minimal length required to induce exon skipping. Evaluation of exon skipping activity using mismatched LNA/DNA mixmers revealed that 9-mer LNA SSO allowed a better mismatch discrimination. LNA SSOs also induced exon skipping of endogenous human dystrophin in primary human skeletal muscle cells. Taken together, our findings indicate that LNA SSOs are powerful tools for modulating pre-mRNA splicing.


Assuntos
Oligonucleotídeos/química , Splicing de RNA , Adolescente , Pareamento Incorreto de Bases , Linhagem Celular , Células Cultivadas , Distrofina/genética , Éxons , Feminino , Humanos , Músculo Esquelético/metabolismo
8.
Nanotechnology ; 26(24): 245101, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26011124

RESUMO

Recently, nanomaterial-mediated biological effects have been shown to be governed by the interaction of nanomaterials with some kinds of proteins in biological fluids, and the physical characteristics of the nanomaterials determine the extent and type of their interactions with proteins. Here, we examined the relationships between the surface properties of amorphous silica nanoparticles with diameters of 70 nm (nSP70), their interactions with some proteins in biological fluids, and their toxicity in mice after intravenous administration. The surface modification of nSP70 with amino groups (nSP70-N) prevented acute lethality and abnormal activation of the coagulation cascade found in the nSP70-treated group of mice. Since our previous study showed that coagulation factor XII played a role in the nSP70-mediated abnormal activation of the coagulation cascade, we examined the interaction of nSP70 and nSP70-N with coagulation factor XII. Coagulation factor XII bonded to the surface of nSP70 to a greater extent than that observed for nSP70-N, and consequently more activation of coagulation factor XII was observed for nSP70 than for nSP70-N. Collectively, our results suggest that controlling the interaction of nSP70 with blood coagulation factor XII by modifying the surface properties would help to inhibit the nSP70-mediated abnormal activation of the blood coagulation cascade.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Nanopartículas/toxicidade , Coroa de Proteína/metabolismo , Dióxido de Silício/toxicidade , Administração Intravenosa , Animais , Fator XIIa/metabolismo , Feminino , Camundongos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Dióxido de Silício/administração & dosagem , Propriedades de Superfície
9.
Part Fibre Toxicol ; 12: 16, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113229

RESUMO

BACKGROUND: The skin is a key route of human exposure to nanomaterials, which typically occurs simultaneously with exposure to other chemical and environmental allergen. However, little is known about the hazards of nanomaterial exposure via the skin, particularly when accompanied by exposure to other substances. RESULTS: Repeated topical treatment of both ears and the shaved upper back of NC/Nga mice, which are models for human atopic dermatitis (AD), with a mixture of mite extract and silica nanoparticles induced AD-like skin lesions. Measurements of ear thickness and histologic analyses revealed that cutaneous exposure to silica nanoparticles did not aggravate AD-like skin lesions. Instead, concurrent cutaneous exposure to mite allergens and silica nanoparticles resulted in the low-level production of allergen-specific IgGs, including both the Th2-related IgG1 and Th1-related IgG2a subtypes, with few changes in allergen-specific IgE concentrations and in Th1 and Th2 immune responses. In addition, these changes in immune responses increased the sensitivity to anaphylaxis. Low-level IgG production was induced when the mice were exposed to allergen-silica nanoparticle agglomerates but not when the mice exposed to nanoparticles applied separately from the allergen or to well-dispersed nanoparticles. CONCLUSIONS: Our data suggest that silica nanoparticles themselves do not directly affect the allergen-specific immune response after concurrent topical application of nanoparticles and allergen. However, when present in allergen-adsorbed agglomerates, silica nanoparticles led to a low IgG/IgE ratio, a key risk factor of human atopic allergies. We suggest that minimizing interactions between nanomaterials and allergens will increase the safety of nanomaterials applied to skin.


Assuntos
Anafilaxia/imunologia , Antígenos de Dermatophagoides , Dermatite Alérgica de Contato/imunologia , Imunoglobulina E/imunologia , Nanopartículas , Dióxido de Silício , Pele/imunologia , Anafilaxia/sangue , Animais , Citocinas/sangue , Citocinas/imunologia , Dermatite Alérgica de Contato/sangue , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Feminino , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Medição de Risco , Pele/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Tempo
10.
Artigo em Japonês | MEDLINE | ID: mdl-25707197

RESUMO

Over the past decade, oligonucleotide-based therapeutics such as antisense oligonucleotides and small interfering RNAs (siRNAs) have been developed extensively. For example, mipomersen (Kynamro; ISIS Pharmaceuticals), which is a second-generation antisense oligonucleotide administered by subcutaneous injection, has recently been approved by the FDA for the treatment of homozygous familial hypercholesterolemia. On the other hands, methods for the evaluation of quality, efficacy and safety of oligonucleotide therapeutics have not been fully discussed. Furthermore, the regulatory guidance specific for oligonucleotide therapeutics has not been established yet. Under these circumstances, we started to collaborate with Osaka University and PMDA to discuss regulatory science focused on oligonucleotide therapeutics. Through the collaboration, we would like to propose the possible design of quality evaluation and preclinical safety-evaluation of oligonucleotide therapeutics.


Assuntos
Oligorribonucleotídeos Antissenso , Farmacovigilância , RNA Interferente Pequeno , Pesquisa Translacional Biomédica , Comportamento Cooperativo , Aprovação de Drogas , Órgãos Governamentais , Administração de Serviços de Saúde , Humanos , Injeções Subcutâneas , Oligonucleotídeos/administração & dosagem
11.
Artigo em Inglês | MEDLINE | ID: mdl-39082615

RESUMO

Therapeutic oligonucleotides such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA) are among the most remarkable modalities in modern medicine. ASOs and siRNA are composed of single- or double-stranded 15-25 mer synthesized oligonucleotides, which can be used to modulate gene expression. Liquid chromatography-mass spectrometry (LC/MS) is a necessary technique for the quality control of therapeutic oligonucleotides; it is used to evaluate the quantities of target oligonucleotides and their impurities. The widely applied oligonucleotide therapeutic quantitation method uses both ultraviolet (UV) absorbance and the MS signal intensity. Peaks separated from the main peak, which contains full-length product, are generally quantitated by UV. However, coeluting impurities, such as n - 1 shortmers, abasic oligonucleotides, and PS → PO (phosphorothiate to phosphodiester) oligonucleotides, are quantitated by MS. These coeluting impurities can also be comprised of various isomers with the same modification, thus increasing the difficulty in their separation and relative quantitation by LC/MS. It is possible that a specific isomer with a certain structural form induces toxicities. Therefore, characterization of each isomer separation is in high demand. In this study, we separated and characterized oligonucleotide isomers by employing a cyclic ion mobility mass spectrometry (cyclic IMS) system, which allows the separation of ions with the same m/z ratio based on their structural differences. Patisiran antisense and sense strands and their n - 1 and abasic isomers were used as sample sequences, and their ratio characterization was achieved by cyclic IMS. In addition, we evaluated the PS → PO conversion isomers of the antisense strand of givosiran, which originally contained four PS modification sites. The PS → PO isomers exhibited specific and distinguishable mobiligram patterns. We believe that cyclic IMS is a promising method for evaluating therapeutic oligonucleotide isomers.

12.
Sci Rep ; 14(1): 11540, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773176

RESUMO

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Assuntos
Oligonucleotídeos Antissenso , Receptor Toll-Like 9 , Receptor Toll-Like 9/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Humanos , Ilhas de CpG , Animais , Camundongos , Nucleotídeos/metabolismo , Nucleotídeos/química , Açúcares/metabolismo , Açúcares/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia
13.
Part Fibre Toxicol ; 10: 41, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23958113

RESUMO

BACKGROUND: Nanomaterials with particle sizes <100 nm have been already applied in various applications such as cosmetics, medicines, and foods. Therefore, ensuring the safety of nanomaterials is becoming increasingly important. Here we examined the localization and biological responses of intranasally administered amorphous nanosilica particles in mice, focusing on the coagulation system. METHODS: We used nanosilica particles with diameters of 30, 70, or 100 nm (nSP30, nSP70, or nSP100 respectively), and conventional microscale silica particles with diameters of 300 or 1000 nm (mSP300 or mSP1000, respectively). BALB/c mice were intranasally exposed to nSP30, nSP70, nSP100, mSP300, or mSP1000 at concentrations of 500 µg/mouse for 7 days. After 24 hours of last administration, we performed the in vivo transmission electron microscopy analysis, hematological examination and coagulation tests. RESULTS: In vivo transmission electron microscopy analysis showed that nanosilica particles with a diameter <100 nm were absorbed through the nasal cavity and were distributed into liver and brain. Hematological examination and coagulation tests showed that platelet counts decreased and that the activated partial thromboplastin time was prolonged in nSP30 or nSP70-treated groups of mice, indicating that nanosilica particles might have activated a coagulation cascade. In addition, in in vitro activation tests of human plasma, nanosilica particles had greater potential than did conventional microscale silica particles to activate coagulation factor XII. In nanosilica-particle-treated groups, the levels of soluble CD40 ligand, and von Willebrand factor which are involved in stimulating platelets tended to slightly increase with decreasing particle size. CONCLUSIONS: These results suggest that intranasally administered nanosilica particles with diameters of 30 and 70 nm could induce abnormal activation of the coagulation system through the activation of an intrinsic coagulation cascade. This study provides information to advance the development of safe and effective nanosilica particles.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Exposição por Inalação , Nanopartículas , Ativação Plaquetária/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Encéfalo/metabolismo , Ligante de CD40/sangue , Fator XIIa/metabolismo , Feminino , Humanos , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Cavidade Nasal/metabolismo , Tempo de Tromboplastina Parcial , Tamanho da Partícula , Contagem de Plaquetas , Dióxido de Silício/metabolismo , Fatores de Tempo , Distribuição Tecidual , Fator de von Willebrand/metabolismo
14.
Nucleic Acid Ther ; 33(2): 83-94, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36735616

RESUMO

Oligonucleotide therapeutics are attracting attention as a new treatment modality for a range of diseases that have been difficult to target using conventional approaches. Technical advances in chemical modification and drug delivery systems have led to the generation of compounds with excellent profiles as pharmaceuticals, and 16 oligonucleotide therapeutics have been marketed to date. There is a growing need to develop optimal and efficient approaches to evaluate drug metabolism and pharmacokinetics (DMPK) and drug-drug interactions (DDIs) of oligonucleotide therapeutics. The DMPK/DDI profiles of small molecule drugs are highly diverse depending on their structural and physicochemical characteristics, whereas oligonucleotide therapeutics share similar DMPK profiles within each chemistry type. Most importantly, the mechanisms and molecules involved in the distribution and metabolism of oligonucleotides differ from those of small molecules. In addition, there are considerations regarding experimental approaches in the evaluation of oligonucleotides, such as bioanalytical challenges, the use of radiolabeled tracers, materials for in vitro metabolism/DDI studies, and methods to study biodistribution. In this review, we attempt to summarize the DMPK characteristics of antisense oligonucleotide (ASO) therapeutics and discuss some of the issues regarding how to optimize the evaluation and prediction of the DMPK and DDI of ASOs.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Preparações Farmacêuticas , Distribuição Tecidual , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos/química , Sistemas de Liberação de Medicamentos
15.
Biochem Biophys Res Commun ; 427(3): 553-6, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23022188

RESUMO

Nanomaterials (NMs) exhibit unique physicochemical properties and innovative functions, and they are increasingly being used in a wide variety of fields. Ensuring the safety of NMs is now an urgent task. Recently, we reported that amorphous silica nanoparticles (nSPs), one of the most widely used NMs, enhance antigen-specific cellular immune responses and may therefore aggravate immune diseases. Thus, to ensure the design of safer nSPs, investigations into the effect of nSPs on antigen presentation in dendritic cells, which are central orchestrators of the adaptive immune response, are now needed. Here, we show that nSPs with diameters of 70 and 100 nm enhanced exogenous antigen entry into the cytosol from endosomes and induced cross-presentation, whereas submicron-sized silica particles (>100 nm) did not. Furthermore, we show that surface modification of nSPs suppressed cross-presentation. Although further studies are required to investigate whether surface-modified nSPs suppress immune-modulating effects in vivo, the current results indicate that appropriate regulation of the characteristics of nSPs, such as size and surface properties, will be critical for the design of safer nSPs.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Apresentação Cruzada/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Nanopartículas/efeitos adversos , Dióxido de Silício/efeitos adversos , Animais , Células Cultivadas , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula
16.
Biochem Biophys Res Commun ; 427(4): 748-52, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23044420

RESUMO

Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.


Assuntos
Dano ao DNA , Nanopartículas/química , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos , Propriedades de Superfície
17.
Nanotechnology ; 23(4): 045101, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214761

RESUMO

We previously reported that well-dispersed amorphous nanosilicas with particle size 70 nm (nSP70) penetrate skin and produce systemic exposure after topical application. These findings underscore the need to examine biological effects after systemic exposure to nanosilicas. The present study was designed to examine the biological effects. BALB/c mice were intravenously injected with amorphous nanosilicas of sizes 70, 100, 300, 1000 nm and then assessed for survival, blood biochemistry, and coagulation. As a result, injection of nSP70 caused fatal toxicity, liver damage, and platelet depletion, suggesting that nSP70 caused consumptive coagulopathy. Additionally, nSP70 exerts procoagulant activity in vitro associated with an increase in specific surface area, which increases as diameter reduces. In contrast, nSP70-mediated procoagulant activity was absent in factor XII-deficient plasma. Collectively, we revealed that interaction between nSP70 and intrinsic coagulation factors such as factor XII, were deeply related to nSP70-induced harmful effects. In other words, it is suggested that if interaction between nSP70 and coagulation factors can be suppressed, nSP70-induced harmful effects may be avoided. These results would provide useful information for ensuring the safety of nanomaterials (NMs) and open new frontiers in biological fields by the use of NMs.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Animais , Fator XII/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Dióxido de Silício/química , Baço/efeitos dos fármacos , Baço/patologia , Análise de Sobrevida , Tempo de Coagulação do Sangue Total
18.
Part Fibre Toxicol ; 9: 3, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22296706

RESUMO

BACKGROUND: Due to the rising use of nanomaterials (NMs), there is concern that NMs induce undesirable biological effects because of their unique physicochemical properties. Recently, we reported that amorphous silica nanoparticles (nSPs), which are one of the most widely used NMs, can penetrate the skin barrier and induce various biological effects, including an immune-modulating effect. Thus, it should be clarified whether nSPs can be a risk factor for the aggravation of skin immune diseases. Thus, in this study, we investigated the relationship between the size of SPs and adjuvant activity using a model for atopic dermatitis. RESULTS: We investigated the effects of nSPs on the AD induced by intradermaly injected-mite antigen Dermatophagoides pteronyssinus (Dp) in NC/Nga mice. Ear thickness measurements and histopathological analysis revealed that a combined injection of amorphous silica particles (SPs) and Dp induced aggravation of AD in an SP size-dependent manner compared to that of Dp alone. In particular, aggravation was observed remarkably in nSP-injected groups. Furthermore, these effects were correlated with the excessive induction of total IgE and a stronger systemic Th2 response. We demonstrated that these results are associated with the induction of IL-18 and thymic stromal lymphopoietin (TSLP) in the skin lesions. CONCLUSIONS: A particle size reduction in silica particles enhanced IL-18 and TSLP production, which leads to systemic Th2 response and aggravation of AD-like skin lesions as induced by Dp antigen treatment. We believe that appropriate regulation of nanoparticle physicochemical properties, including sizes, is a critical determinant for the design of safer forms of NMs.


Assuntos
Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Injeções Intradérmicas/efeitos adversos , Nanopartículas/efeitos adversos , Nanopartículas/química , Dióxido de Silício/efeitos adversos , Dióxido de Silício/química , Animais , Citocinas/imunologia , Dermatophagoides pteronyssinus/imunologia , Humanos , Imunidade Ativa/imunologia , Interleucina-18/imunologia , Masculino , Camundongos , Tamanho da Partícula , Linfopoietina do Estroma do Timo
19.
Mol Diagn Ther ; 26(1): 117-127, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34994962

RESUMO

AIM: Antisense oligonucleotide (ASO) has the potential to induce off-target effects by inadvertent binding of ASOs to unintended RNAs that have a sequence similar to the target RNA. In the present study, we focused on the association between oligonucleotide length and off-target effects. Oligonucleotide extension is assumed to have bilateral effects on hybridization-dependent changes in gene expression, i.e., one is the decrease of off-target effects based on the reduced number of off-target candidate genes with perfect matches, and the other is the increase of off-target effects based on the increased binding affinity between the ASO and the complementary RNAs that leads to better tolerability for mismatches. METHODS: To determine the effects of oligonucleotide extension of gapmer ASOs on off-target effects, an extensive microarray analysis was performed using human cells treated with a 14-mer gapmer ASO and the extended 18-mer derivatives with the same core 14-mer region. RESULTS AND DISCUSSION: Our data indicated that change in gene expression in the cells treated with 18-mer ASOs was significantly smaller than those with a 14-mer ASO, showing the decrease of off-target effects by oligonucleotide extension.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , RNA/genética
20.
Bioanalysis ; 14(18): 1213-1227, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36408704

RESUMO

Background: Many bioanalytical methods for antisense oligonucleotides (ASOs) using LC-MS have been reported. However, no data have been available on the reproducibility and robustness of a single bioanalytical method for ASOs. As such, in the current study, we evaluated the reproducibility and robustness of LC-MS-based bioanalytical methods for ASOs in multiple laboratories. Methods/Results: Seven independent laboratories were included in this study. Mipomersen was measured by ion-pairing LC-MS (IP-LC-MS) as a model ASO using different LC-MS. The validation results of calibration curve, accuracy, precision and selectivity met the criteria of conventional bioanalytical method validation guidelines using LC/GC-MS for drugs in all laboratories. Meanwhile, carryover (>20%) was detected in three laboratories. Conclusion: We first demonstrated the multicenter-validated IP-LC-MS bioanalytical method for ASOs. Our data showed that the method was sensitive, robust and reproducible. However, the occurrence of carryover should be carefully monitored in its future application.


Assuntos
Terapia Biológica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA