Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 194(1): 135-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918800

RESUMO

Osteophytes in osteoarthritis (OA) joints contribute to restriction of joint movement, joint pain, and OA progression, but little is known about osteophyte regulators. Examination of gene expression related to cartilage extracellular matrix, endochondral ossification, and growth factor signaling in articular cartilage and osteophytes obtained from OA knee joints showed that several genes such as COL1A1, VCAN, BGLAP, BMP8B, RUNX2, and SOST were overexpressed in osteophytes compared with articular cartilage. Ratios of mesenchymal stem/progenitor cells, which were characterized by co-expression of CD105 and CD166, were significantly higher in osteophytic cells than articular cells. A three-dimensional culture method for cartilage and osteophyte cells was developed by modification of cultures of self-assembled spheroid cell organoids (spheroids). These spheroids cultured in the media for mesenchymal stem cells containing transforming growth factor-ß3 showed characteristic morphologies and gene expression profiles of articular cartilage and osteophytes, respectively. The effects of IL-1ß, tumor necrosis factor-α, and IL-6 on the spheroids of articular and osteophytic cells were studied. To the best of our knowledge, they provide the first evidence that IL-6 suppresses the spheroid size of osteophytic cells by inducing apoptosis and reducing extracellular matrix molecules. These data show that IL-6 is the suppressor of osteophyte growth and suggest that IL-6 expression and/or activity are implicated in the regulation of osteophyte formation in pathologic joints.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Osteófito , Humanos , Cartilagem Articular/patologia , Condrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-6/metabolismo , Articulação do Joelho/patologia , Osteoartrite/patologia , Osteoartrite do Joelho/metabolismo , Osteófito/genética , Osteófito/metabolismo , Osteófito/patologia
2.
Lab Invest ; 102(1): 102-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718343

RESUMO

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1ß, tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-ß markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-ß, or IL-1α, TNF-α and TGF-ß. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-ß-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-ß-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-ß was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-ß in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.


Assuntos
Proteína ADAMTS4/genética , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Osteoartrite do Joelho/metabolismo , Membrana Sinovial/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína ADAMTS4/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Fator de Crescimento Transformador beta/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Am J Pathol ; 191(11): 1986-1998, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390681

RESUMO

Hyaluronan (HA)-binding protein involved in HA depolymerization (HYBID) is involved in cartilage destruction via HA depolymerization in human knee osteoarthritis. However, the role of HYBID in the progression of osteoarthritis remain elusive. This study sought to examine whether genetic depletion of Hybid could suppress surgically induced osteoarthritis of mouse knee joints. In osteoarthritis induced by medial collateral ligament transection with meniscus removal, articular cartilage destruction and osteophyte formation at the medial femoral-tibial joint were significantly inhibited in Hybid-deficient (Hybid-/-) mice compared with wild-type mice. Hybid was highly produced by synovial cells and articular chondrocytes in the osteoarthritis joints of wild-type mice. IL-1ß, IL-6, and tumor necrosis factor-α were up-regulated in the osteoarthritis joint tissues of both wild-type and Hybid-/- mice. Vascular density at the synovial and periosteal junction was significantly reduced in Hybid-/- mice compared with wild-type mice. High-molecular-weight HA accumulated in osteoarthritis joint tissues of Hybid-/- mice. Injections of high-molecular-weight HA to knee joints attenuated the cartilage destruction and osteophyte formation in wild-type mouse osteoarthritis group. Inhibition of cartilage destruction and osteophyte formation in Hybid-/- mice was also observed in destabilization of the medial meniscus model. These data are the first to demonstrate that cartilage destruction and osteophyte formation are suppressed in Hybid-/- mice and suggest that Hybid-mediated HA depolymerization is implicated for the progression of mechanically-induced knee osteoarthritis.


Assuntos
Ácido Hialurônico/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Camundongos
4.
Am J Pathol ; 190(5): 1046-1058, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084364

RESUMO

Cell migration-inducing hyaluronidase 1 (CEMIP), also known as hyaluronan (HA)-binding protein involved in HA depolymerization (HYBID), plays a role in HA degradation. CEMIP2, also known as transmembrane protein 2 (TMEM2), possessing a sequence similarity with HYBID, is reported as a hyaluronidase in mice. However, the expression of these molecules in osteoarthritic synovium and their involvement in HA degradation in synovial fluid (SF) from patients with knee osteoarthritis remain elusive. This study examined their expression in synovial tissue and the relationship with molecular weight of HA in SF in knee osteoarthritis patients. Quantification of mRNA demonstrated that HYBID expression is significantly (5.5-fold) higher in osteoarthritic synovium than in normal control synovium, whereas TMEM2 expression level is similar between the two groups. By immunohistochemistry, HYBID was localized mainly to CD68-negative and fibroblast-specific protein 1-positive synovial lining cells and sublining fibroblasts in osteoarthritic synovium. The mRNA expression levels of HYBID, but not TMEM2, in osteoarthritic synovium positively correlated with distribution of lower-molecular-weight HA with below 1000 kDa in SF. HA-degrading activity in osteoarthritic synovial fibroblasts was abrogated by siRNA-mediated knockdown of HYBID. Among the 12 factors examined, IL-6 significantly up-regulated the HYBID expression and HA-degrading activity in osteoarthritic synovial fibroblasts. These data suggest that HYBID overexpressed by IL-6-stimulated synovial fibroblasts is implicated in HA degradation in osteoarthritic synovium.


Assuntos
Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Proteínas de Membrana/metabolismo , Osteoartrite do Joelho/metabolismo , Idoso , Feminino , Humanos , Masculino , Osteoartrite do Joelho/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
5.
Sci Rep ; 12(1): 17242, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241903

RESUMO

Destruction of articular cartilage in osteoarthritis (OA) is initiated by depletion of the hyaluronan (HA)-aggrecan network, followed by degradation of the collagen fibrils. Previously, we reported the implications of HA-binding protein involved in HA depolymerization (HYBID), alias cell migration-inducing protein (CEMIP) and KIAA1199, for HA degradation. However, transmembrane protein 2 (TMEM2), which is ~ 50% homologous to HYBID, was discovered as another hyaluronidase, but their expression and regulation by OA chondrocytes remain elusive. Here we report that the absolute mRNA copy numbers of HYBID are significantly (7.1-fold) higher in OA cartilage than normal cartilage, whereas TMEM2 levels are not different between the groups. HA-degrading activity of cultured OA chondrocytes disappeared by siRNA-mediated knockdown of HYBID, but not TMEM2. HYBID expression was significantly up-regulated by treatment with interleukin-6 (IL-6) or tumor necrosis factor-α (TNF-α) and additively increased by the combined treatment. No significant changes in the TMEM2 expression were seen by the factors examined. IL-1α remarkably enhanced IL-6 production and increased HYBID expression when soluble IL-6 receptor was supplemented. These results demonstrate that in stark contrast to the constitutive expression of TMEM2 and its negligible HA-degrading activity, HYBID is overexpressed in OA cartilage and up-regulated by IL-6 and TNF-α in OA chondrocytes.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Agrecanas/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Colágeno/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Interleucina-6/metabolismo , Osteoartrite/patologia , Receptores de Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA