Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biochemistry ; 59(39): 3639-3649, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32929969

RESUMO

Suppression of protein aggregation is a subject of growing importance in the treatment of protein aggregation diseases, an urgent worldwide human health problem, and the production of therapeutic proteins, such as antibody drugs. We previously reported a method to identify compounds that suppress aggregation, based on screening using multiple terminal deletion mutants. We now present a method to determine the aggregation contact sites of proteins, using such solubilizing compounds, to design monodispersed mutants. We applied this strategy to the chemokine receptor-binding domain (CRBD) of FROUNT, which binds to the membrane-proximal C-terminal intracellular region of CCR2. Initially, the backbone NMR signals were assigned to a certain extent by available methods, and the putative locations of five α-helices were identified. Based on NMR chemical shift perturbations upon varying the protein concentrations, the first and third helices were found to contain the aggregation contact sites. The two helices are amphiphilic, and based on an NMR titration with 1,6-hexanediol, a CRBD solubilizing compound, the contact sites were identified as the hydrophobic patches located on the hydrophilic sides of the two helices. Subsequently, we designed multiple mutants targeting amino acid residues on the contact sites. Based on their NMR spectra, a doubly mutated CRBD (L538E/P612S) was selected from the designed mutants, and its monodispersed nature was confirmed by other biophysical methods. We then assessed the CCR2-binding activities of the mutants. Our method is useful for the protein structural analyses, the treatment of protein aggregation diseases, and the improvement of therapeutic proteins.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Mutação Puntual , Agregados Proteicos , Sítios de Ligação/efeitos dos fármacos , Glicóis/química , Glicóis/farmacologia , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Agregados Proteicos/efeitos dos fármacos , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Receptores CCR2/química , Receptores CCR2/metabolismo , Solubilidade
2.
Genes Cells ; 23(2): 70-79, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29292854

RESUMO

The control of protein solubility is a subject of broad interest. Although several solvent screening methods are available to search for compounds that enhance protein solubilization, their performance is influenced by the intrinsic solubility of the tested protein. We now present a method for screening solubilizing compounds, using an array of N- or C-terminal deletion mutants of the protein. A key behind this approach is that such terminal deletions of the protein affect its aggregation propensity. The solubilization activities of trial solvents are individually assessed, based on the number of solubilized mutants. The solubilizing compounds are then identified from the screened solvents. In this study, the C-terminal chemokine receptor-binding region of the cytoplasmic protein, FROUNT (FNT-C), which mediates intracellular signals leading to leukocyte migration, was subjected to the multicomponent screening. In total, 192 solution conditions were tested, using eight terminal deletion mutants of FNT-C. We identified five solvent conditions that solubilized four or five mutants of FNT-C, and the compounds in the screened solvents were then, respectively, assessed in terms of their solubilization ability. The best compound for solubilizing FNT-C was 1,6-hexanediol. Indeed, 1,6-hexanediol bound to FNT-C and suppressed its precipitation, as showed by NMR and dynamic light scattering analyses.


Assuntos
Glicóis/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Estabilidade Proteica , Deleção de Sequência , Solventes/metabolismo , Movimento Celular , Células Cultivadas , Glicóis/química , Ensaios de Triagem em Larga Escala , Humanos , Leucócitos/citologia , Leucócitos/fisiologia , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Multimerização Proteica/efeitos dos fármacos , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Solubilidade , Solventes/química
3.
Biochem J ; 457(2): 313-22, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128342

RESUMO

Chemokine receptors mediate the migration of leucocytes during inflammation. The cytoplasmic protein FROUNT binds to chemokine receptors CCR2 [chemokine (C-C motif) receptor 2] and CCR5, and amplifies chemotactic signals in leucocytes. Although the interaction between FROUNT and chemokine receptors is important for accurate chemotaxis, the interaction mechanism has not been elucidated. In the present study we identified a 16-amino-acid sequence responsible for high-affinity binding of FROUNT at the membrane-proximal C-terminal intracellular region of CCR2 (CCR2 Pro-C) by yeast two-hybrid analysis. Synthesized peptides corresponding to the CCR2 Pro-C sequence directly interacted with FROUNT in vitro. CCR2 Pro-C was predicted to form an amphipathic helix structure. Residues on the hydrophobic side are completely conserved among FROUNT-binding receptors, suggesting that the hydrophobic side is the responsible element for FROUNT binding. The L316T mutation to the hydrophobic side of the predicted helix decreased the affinity for FROUNT. Co-immunoprecipitation assays revealed that the CCR2 L316T mutation diminished the interaction between FROUNT and full-length CCR2 in cells. Furthermore, this mutation impaired the ability of the receptor to mediate chemotaxis. These findings provide the first description of the functional binding element in helix 8 of CCR2 for the cytosolic regulator FROUNT that mediates chemotactic signalling.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Sequência de Aminoácidos , Membrana Celular/genética , Sequência Conservada , Humanos , Células Jurkat , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica/fisiologia , Distribuição Aleatória , Receptores CCR2/genética , Receptores CCR5/genética
4.
J Biol Chem ; 288(22): 16064-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23576433

RESUMO

Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.


Assuntos
Proteínas/química , Receptores de Feromônios/química , Atrativos Sexuais/química , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Relação Estrutura-Atividade
5.
Protein Expr Purif ; 96: 20-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486813

RESUMO

Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/genética , Feromônios/genética , Animais , Cromatografia de Afinidade , Clonagem Molecular , Expressão Gênica , Corpos de Inclusão/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Feromônios/biossíntese , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
6.
Bioorg Med Chem ; 20(14): 4437-42, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22695182

RESUMO

Hyrtioreticulins A-E (1-5) were isolated from the marine sponge Hyrtios reticulatus, along with a known alkaloid, hyrtioerectine B (6). Structural elucidation on the basis of spectral data showed that 1, 2, and 5 are new tetrahydro-ß-carboline alkaloids, while 3 and 4 are new azepinoindole-type alkaloids. Hyrtioreticulins A and B (1 and 2) inhibited ubiquitin-activating enzyme (E1) with IC(50) values of 0.75 and 11µg/mL, respectively, measured by their inhibitory abilities against the formation of an E1-ubiquitin intermediate. So far, only five E1 inhibitors, panapophenanthrine, himeic acid A, largazole, and hyrtioreticulins A and B (1 and 2), have been isolated from natural sources and, among them, 1 is the most potent E1 inhibitor.


Assuntos
Inibidores Enzimáticos/química , Alcaloides Indólicos/química , Poríferos/química , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Animais , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Enzimas Ativadoras de Ubiquitina/metabolismo
7.
Protein Expr Purif ; 77(1): 86-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21193048

RESUMO

Chemokine receptors play pivotal roles for immune cell recruitment to inflammation sites, in response to chemokine gradients (chemotaxis). The mechanisms of chemokine signaling, especially the initiation of the intracellular signaling cascade, are not well understood. We previously identified a cytoplasmic protein FROUNT, which binds to the C-terminal regions of CCR2 and CCR5 to mediate chemokine signaling. Although large amounts of purified protein are required for detailed biochemical studies and drug screening, no method to produce recombinant FROUNT has been reported. In this study, we developed a method for the production of recombinant human FROUNT. Human FROUNT was successfully expressed in Escherichia coli, as a soluble protein fused to the folding chaperone Trigger Factor, with a cold shock expression system. The purified FROUNT protein displayed CCR2 binding ability without any additional components, as demonstrated by SPR measurements. A gel filtration analysis suggested that FROUNT exists in a homo-oligomeric state. This high-yield method is cost-effective for human FROUNT production. It should be a powerful tool for further biochemical and structural studies to elucidate GPCR regulation and chemokine signaling, and also will contribute to drug development.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/isolamento & purificação , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequência de Aminoácidos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de Proteína
8.
Nat Commun ; 11(1): 609, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001710

RESUMO

Tumor-associated macrophages affect tumor progression and resistance to immune checkpoint therapy. Here, we identify the chemokine signal regulator FROUNT as a target to control tumor-associated macrophages. The low level FROUNT expression in patients with cancer correlates with better clinical outcomes. Frount-deficiency markedly reduces tumor progression and decreases macrophage tumor-promoting activity. FROUNT is highly expressed in macrophages, and its myeloid-specific deletion impairs tumor growth. Further, the anti-alcoholism drug disulfiram (DSF) acts as a potent inhibitor of FROUNT. DSF interferes with FROUNT-chemokine receptor interactions via direct binding to a specific site of the chemokine receptor-binding domain of FROUNT, leading to inhibition of macrophage responses. DSF monotherapy reduces tumor progression and decreases macrophage tumor-promoting activity, as seen in the case of Frount-deficiency. Moreover, co-treatment with DSF and an immune checkpoint antibody synergistically inhibits tumor growth. Thus, inhibition of FROUNT by DSF represents a promising strategy for macrophage-targeted cancer therapy.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Dissulfiram/farmacologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Progressão da Doença , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunoterapia , Cinética , Neoplasias Pulmonares/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Metástase Neoplásica , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Prognóstico , Fatores de Risco
9.
Sci Rep ; 8(1): 14911, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297794

RESUMO

Water soluble spin-crossover (SCO) iron(II) nanoparticles (NPs) were synthesized by the polyethylene glycol (PEG) coating of [Fe(Htrz)3-3×(NH2trz)3×](BF4)2 (x = 0, 0.1, 0.5 and 1). The NPs with x = 0.1 show gradual SCO behavior over 280-330 K in water. The relaxation times, T1 and T2, were determined and the thermally-responsive T2 values making these NPs a candidate for use as a MRI contrast agent.

10.
Biomol NMR Assign ; 12(2): 259-262, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594928

RESUMO

FROUNT is a cytoplasmic protein that interacts with the membrane-proximal C-terminal regions (Pro-Cs) of the CCR2 and CCR5 chemokine receptors. The interactions between FROUNT and the chemokine receptors play an important role in the migration of inflammatory immune cells. Therefore, FROUNT is a potential drug target for inflammatory diseases. However, the structural basis of the interactions between FROUNT and the chemokine receptors remains to be elucidated. We previously identified the C-terminal region (residues 532-656) of FROUNT as the structural domain responsible for the Pro-C binding, referred to as the chemokine receptor-binding domain (CRBD), and then constructed its mutant, bearing L538E/P612S mutations, with improved NMR spectral quality, referred to as CRBD_LEPS. We now report the main-chain and side-chain 1H, 13C, and 15N resonance assignments of CRBD_LEPS. The NMR signals of CRBD_LEPS were well dispersed and their intensities were uniform on the 1H-15N HSQC spectrum, and thus almost all of the main-chain and side-chain resonances were assigned. This assignment information provides the foundation for NMR studies of the three-dimensional structure of CRBD_LEPS in solution and its interactions with chemokine receptors.


Assuntos
Quimiotaxia , Citoplasma/metabolismo , Ressonância Magnética Nuclear Biomolecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores de Quimiocinas/metabolismo , Humanos , Ligação Proteica
11.
Mol Biotechnol ; 59(4-5): 141-150, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28342149

RESUMO

FROUNT is a cytoplasmic protein that binds to the membrane-proximal C-terminal regions (Pro-Cs) of chemokine receptors, CCR2 and CCR5. The FROUNT-chemokine receptor interactions play a pivotal role in the migration of inflammatory immune cells, indicating the potential of FROUNT as a drug target for inflammatory diseases. To provide the foundation for drug development, structural information of the Pro-C binding region of FROUNT is desired. Here, we defined the novel structural domain (FNT-CB), which mediates the interaction with the chemokine receptors. A recombinant GST-tag-fused FNT-CB protein expression system was constructed. The protein was purified by affinity chromatography and then subjected to in-gel protease digestion of the GST-tag. The released FNT-CB was further purified by anion-exchange and size-exclusion chromatography. Purified FNT-CB adopts a helical structure, as indicated by CD. NMR line-broadening indicated that weak aggregation occurred at sub-millimolar concentrations, but the line-broadening was mitigated by using a deuterated sample in concert with transverse relaxation-optimized spectroscopy. The specific binding of FNT-CB to CCR2 Pro-C was confirmed by the fluorescence-based assay. The improved NMR spectral quality and the retained functional activity of FNT-CB support the feasibility of further structural and functional studies targeted at the anti-inflammatory drug development.


Assuntos
Escherichia coli/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/química , Receptores CXCR4/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Ligação Proteica , Receptores CXCR4/ultraestrutura
12.
J Mol Biol ; 317(1): 159-67, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11916386

RESUMO

Solution structure of POIA1 (Pleurotus ostreatus proteinase A inhibitor 1), which functions as an intramolecular chaperone and as an inhibitor to subtilisin, was determined. By making use of the fact that POIA1 is the only structured protein that shows homology to the propeptide of subtilisin, which is unstructured by itself, foldability of this protein was elucidated. It became clear that the evolutionarily conserved residues play two important roles, one for the maintenance of its own structure, and the other for the interaction with subtilisin. Structural softness and mutational tolerance contained in the POIA1 structure makes it an ideal material for designing a foldable protein.


Assuntos
Precursores Enzimáticos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/química , Pleurotus/química , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Subtilisinas/química , Sequência de Aminoácidos , Sequência Conservada , Precursores Enzimáticos/antagonistas & inibidores , Evolução Molecular , Proteínas Fúngicas/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/antagonistas & inibidores , Pleurotus/genética , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Conformação Proteica , Alinhamento de Sequência , Soluções , Subtilisinas/antagonistas & inibidores
13.
Biomol NMR Assign ; 8(1): 7-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179060

RESUMO

A peptide or a small protein released from an exocrine gland or in urine is utilized as a chemosignal that elicits social or reproductive behavior in mice. Recently, we identified the male-specific peptide, exocrine gland-secreting peptide 1 (ESP1), in mouse tear fluids that enhanced female sexual receptive behavior, and determined the three dimensional structure. ESP1 appears to be a member of multigene family that consists of 38 genes in mice, which we call the ESP family. ESP4, a member of the ESP family, is expressed in various exocrine glands, and shows the highest sequence similarity with ESP1. Here, we report the NMR assignments of ESP4 which provides a basis for NMR analyses of this protein. Our results will give insight into structural relationships within the ESP family.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Animais , Isótopos de Carbono , Feminino , Hidrogênio , Masculino , Camundongos , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
14.
FEBS J ; 281(24): 5552-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283965

RESUMO

The membrane-proximal C-terminal region (Pro-C) is important for the regulation of G-protein-coupled receptors (GPCRs), but the binding of the Pro-C region to a cytosolic regulator has not been structurally analyzed. The chemokine receptor CCR2 is a member of the GPCR superfamily, and the Pro-C region of CCR2 binds to the cytosolic regulator FROUNT. Studying the interaction between CCR2 Pro-C and FROUNT at an atomic level provides a basis for understanding the signal transduction mechanism via GPCRs. NOE-based NMR experiments showed that, when bound to FROUNT, CCR2 Pro-C adopted a helical conformation, as well as when embedded in dodecylphosphocholine micelles. A comparison of two types of cross-saturation-based NMR experiments, applied to a three-component mixture of Pro-C, FROUNT and micelles or a two-component mixture of Pro-C and micelles, revealed that the hydrophobic binding surface on Pro-C for FROUNT mostly overlapped with the binding site for micelles, suggesting competitive binding of Pro-C between FROUNT and micelles. Leu316 was important for both FROUNT and micelle binding. Phe319 was newly identified to be crucial for FROUNT binding, by NMR and mutational analyses. The association and dissociation rates of CCR2 Pro-C for lipid bilayer biomembranes were faster than those for FROUNT. We previously reported that FROUNT binding to CCR2 is detectable even in unstimulated cells and increases in response to chemokine stimulation. Taken together, these results support a model of CCR2 equilibrium: chemokine binding changes the conformational equilibrium of CCR2 toward the active state, and Pro-C switches its binding partner from the membrane to FROUNT.


Assuntos
Citosol/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores CCR2/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Micelas , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Receptores CCR2/química , Análise Espectral/métodos
16.
J Biochem ; 146(3): 317-25, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19451149

RESUMO

Bem1 and Cdc24 of the budding yeast Saccharomyces cerevisiae interact with each other through PB1-PB1 heterodimer formation to regulate the establishment of cell polarity. Here we present the tertiary structure of the heterodimer of Bem1 and Cdc24 PB1 domains determined by NMR spectroscopy. To avoid ambiguity in the NMR spectral analysis, we first prepared a mutant of the Cdc24 PB1 domain that had truncated loops. The mutant provided well dispersed spectra without spectral overlapping, thus allowing unambiguous spectral assignments for structure determination. We confirmed that the loop deletion-mutant was quite similar to the wild-type in both 3D structure and binding affinity. The NMR structure of the heterodimer of the deletion-mutant of Cdc24 PB1 and Bem1 PB1 was determined using a variety of isotope labelled samples including perdeuteration. The interface between the Bem1/Cdc24 PB1 heterodimer was analysed at atomic resolution. Through a comparison with the tertiary structures of other PB1-PB1 heterodimers, we found that conserved electrostatic properties on the molecular surface were commonly used for PB1-PB1 interaction, but hydrophobic interactions were important for cognate interaction in Bem1/Cdc24 PB1 heterodimer formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
17.
J Biol Chem ; 280(10): 9653-61, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15590654

RESUMO

A complex of atypical PKC and Par6 is a common regulator for cell polarity-related processes, which is an essential clue to evolutionary conserved cell polarity regulation. Here, we determined the crystal structure of the complex of PKCiota and Par6alpha PB1 domains to a resolution of 1.5 A. Both PB1 domains adopt a ubiquitin fold. PKCiota PB1 presents an OPR, PC, and AID (OPCA) motif, 28 amino acid residues with acidic and hydrophobic residues, which interacts with the conserved lysine residue of Par6alpha PB1 in a front and back manner. On the interface, several salt bridges are formed including the conserved acidic residues on the OPCA motif of PKCiota PB1 and the conserved lysine residue on the Par6alpha PB1. Structural comparison of the PKCiota and Par6alpha PB1 complex with the p40phox and p67phox PB1 domain complex, subunits of neutrophil NADPH oxidase, reveals that the specific interaction is achieved by tilting the interface so that the insertion or extension in the sequence is engaged in the specificity determinant. The PB1 domain develops the interaction surface on the ubiquitin fold to increase the versatility of molecular interaction.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Polaridade Celular/fisiologia , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Conservada , Homeostase , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
J Biol Chem ; 279(30): 31883-90, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15143057

RESUMO

Atypical protein kinase C (aPKC) has been implicated in several signaling pathways such as cell polarity, cell survival, and cell differentiation. In contrast to other PKCs, aPKC is unique in having the PB1 (Phox and Bem 1) domain in the N terminus. The aPKC PB1 domain binds with ZIP/p62, Par6, or MEK5 through a PB1-PB1 domain interaction that controls the localization of aPKC. Here, we determined the three-dimensional structure of the PB1 domain of PKCiota by NMR and found that the PB1 domain adopts a ubiquitin fold. The OPCA (OPR, PC, and AID) motif inserted into the ubiquitin fold was presented as a betabetaalpha fold in which the side chains of conserved Asp residues were oriented to the same direction to form an acidic surface. This structural feature suggested that the acidic surface of the PKCiota PB1 domain interacted with the basic surface of the target PB1 domains, and this was confirmed in the case of the PKCiota-ZIP/p62 complex by mutational analysis. Interestingly, in the PKCiota PB1 domain a conserved lysine residue was located on the side opposite to the OPCA motif-presenting surface, suggesting dual roles for the PKCiota PB1 domain in that it could interact with either the conserved lysine residue or the acidic residues on the OPCA motif of the target PB1 domains.


Assuntos
Proteínas de Transporte/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Sequência de Aminoácidos , Humanos , Técnicas In Vitro , Isoenzimas/genética , MAP Quinase Quinase 5 , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Proteína Quinase C/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Termodinâmica , Ubiquitina/química
19.
J Biol Chem ; 278(44): 43516-24, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12920115

RESUMO

The PB1 (Phox and Bem 1) domain is a recently identified module that mediates formation of a heterodimeric complex with other PB1 domain, e.g. the complexes between the phagocyte oxidase activators p67phox and p40phox and between the yeast polarity proteins Bem1p and Cdc24p. These PB1 domains harbor either a conserved lysine residue on one side or an acidic OPCA (OPR/PC/AID) motif around the other side; the lysine of p67phox or Bem1p likely binds to the OPCA of p40phox or Cdc24p, respectively, via electrostatic interactions. To further understand molecular recognition by PB1 domains, here we investigate the interactions mediated by proteins presenting both the lysine and OPCA on a single PB1 domain, namely Par6, atypical protein kinase C (aPKC), and ZIP. Par6 and aPKC form a complex via the interaction of the Par6 lysine with aPKC-OPCA but not via that between the aPKC lysine and Par6-OPCA, thereby localizing to the tight junction of epithelial cells. aPKC also uses its OPCA to interact with ZIP, another protein that has a PB1 domain presenting both the lysine and OPCA, whereas aPKC binds via the conserved lysine to MEK5 in the same manner as ZIP interacts with MEK5. In addition, ZIP can form a homotypic complex via the conserved electrostatic interactions. Thus the PB1 domain appears to be a protein module that fully exploits its two mutually interacting elements in molecular recognition to expand its repertoire of protein-protein interactions.


Assuntos
Fosfoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/química , DNA Complementar/metabolismo , Dimerização , Cães , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Lisina/química , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Proteína Quinase C/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Homologia de Sequência de Aminoácidos , Junções Íntimas , Transfecção , Técnicas do Sistema de Duplo-Híbrido
20.
EMBO J ; 22(19): 4888-97, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14517229

RESUMO

The PC motif is evolutionarily conserved together with the PB1 domain, a binding partner of the PC motif-containing protein. For interaction with the PB1 domain, the PC motif-containing region (PCCR) comprising the PC motif and its flanking regions is required. Because the PB1 domain and the PCCR are novel binding modules found in a variety of signaling proteins, their structural and functional characterization is crucial. Bem1p and Cdc24p interact through the PB1-PCCR interaction and regulate cell polarization in budding yeast. Here, we determined a tertiary structure of the PCCR of Cdc24p by NMR. The tertiary structure of the PCCR is similar to that of the PB1 domain of Bem1p, which is classified into a ubiquitin fold. The PC motif portion takes a compact betabetaalpha-fold, presented on the ubiquitin scaffold. Mutational studies indicate that the PB1-PCCR interaction is mainly electrostatic. Based on the structural information, we group the PB1 domains and the PCCRs into a novel family, named the PB1 family. Thus, the PB1 family proteins form a specific dimer with each other.


Assuntos
Motivos de Aminoácidos , Fatores de Troca do Nucleotídeo Guanina , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA