RESUMO
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados UnidosRESUMO
Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.
Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genética , Genômica/métodos , Mutação/genética , Reprodução , Chlamydomonas reinhardtii/genéticaRESUMO
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Assuntos
Sorghum , Sorghum/genética , Genética Reversa , Melhoramento Vegetal , Mutação , Fenótipo , Grão Comestível/genética , Metanossulfonato de Etila/farmacologia , Genoma de Planta/genéticaRESUMO
The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.
Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Simbiose/genética , Basidiomycota/genética , Raízes de Plantas , AçúcaresRESUMO
Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.
Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Motivos de Aminoácidos , Arabidopsis/genética , Sítios de Ligação , Biotina/química , Mapeamento Cromossômico , DNA/química , Código de Barras de DNA Taxonômico , Bases de Dados Genéticas , Escherichia coli/metabolismo , Biblioteca Gênica , Redes Reguladoras de Genes , Fenótipo , Ligação Proteica , Pseudomonas/metabolismo , Especificidade da Espécie , Fatores de Transcrição/metabolismoRESUMO
Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
Assuntos
Florestas , Fungos , Microbiologia do Solo , Transcriptoma , Fungos/genética , Fungos/fisiologia , Transcriptoma/genética , Micorrizas/fisiologia , Micorrizas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Solo/química , Ecossistema , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The morphological diversity of the inflorescence determines flower and seed production, which is critical for plant adaptation. Hall's panicgrass (Panicum hallii, P. hallii) is a wild perennial grass that has been developed as a model to study perennial grass biology and adaptive evolution. Highly divergent inflorescences have evolved between the 2 major ecotypes in P. hallii, the upland ecotype (P. hallii var hallii, HAL2 genotype) with compact inflorescence and large seed and the lowland ecotype (P. hallii var filipes, FIL2 genotype) with an open inflorescence and small seed. Here we conducted a comparative analysis of the transcriptome and DNA methylome, an epigenetic mark that influences gene expression regulation, across different stages of inflorescence development using genomic references for each ecotype. Global transcriptome analysis of differentially expressed genes (DEGs) and co-expression modules underlying the inflorescence divergence revealed the potential role of cytokinin signaling in heterochronic changes. Comparing DNA methylome profiles revealed a remarkable level of differential DNA methylation associated with the evolution of P. hallii inflorescence. We found that a large proportion of differentially methylated regions (DMRs) were located in the flanking regulatory regions of genes. Intriguingly, we observed a substantial bias of CHH hypermethylation in the promoters of FIL2 genes. The integration of DEGs, DMRs, and Ka/Ks ratio results characterized the evolutionary features of DMR-associated DEGs that contribute to the divergence of the P. hallii inflorescence. This study provides insights into the transcriptome and epigenetic landscape of inflorescence divergence in P. hallii and a genomic resource for perennial grass biology.
Assuntos
Ecótipo , Panicum , Panicum/genética , Transcriptoma/genética , Inflorescência/genética , Epigenoma/genética , Regulação da Expressão Gênica de Plantas , Metilação de DNA/genéticaRESUMO
Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.
Assuntos
Chlamydomonas , RNA Longo não Codificante , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , RNA Longo não Codificante/metabolismo , Metilação de DNA/genética , Cromatina/genética , CitosinaRESUMO
Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.
Assuntos
Populus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismoRESUMO
As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.
Assuntos
Populus , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Populus/genética , RNA Guia de Cinetoplastídeos/genética , TricomasRESUMO
Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.
RESUMO
Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By â¼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.
Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Tecido Adiposo/química , Alelos , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout , Camundongos TransgênicosRESUMO
BACKGROUND: The process of crop domestication often consists of two stages: initial domestication, where the wild species is first cultivated by humans, followed by diversification, when the domesticated species are subsequently adapted to more environments and specialized uses. Selective pressure to increase sugar accumulation in certain varieties of the cereal crop Sorghum bicolor is an excellent example of the latter; this has resulted in pronounced phenotypic divergence between sweet and grain-type sorghums, but the genetic mechanisms underlying these differences remain poorly understood. RESULTS: Here we present a new reference genome based on an archetypal sweet sorghum line and compare it to the current grain sorghum reference, revealing a high rate of nonsynonymous and potential loss of function mutations, but few changes in gene content or overall genome structure. We also use comparative transcriptomics to highlight changes in gene expression correlated with high stalk sugar content and show that changes in the activity and possibly localization of transporters, along with the timing of sugar metabolism play a critical role in the sweet phenotype. CONCLUSIONS: The high level of genomic similarity between sweet and grain sorghum reflects their historical relatedness, rather than their current phenotypic differences, but we find key changes in signaling molecules and transcriptional regulators that represent new candidates for understanding and improving sugar metabolism in this important crop.
Assuntos
Genoma de Planta , Sorghum/genética , Açúcares/metabolismo , DNA de Plantas/química , Perfilação da Expressão Gênica , Genômica/normas , Genótipo , Padrões de Referência , Homologia de Sequência do Ácido Nucleico , Sorghum/metabolismoRESUMO
Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.
Assuntos
Agaricales/genética , Genômica , Lignina/genética , Basidiomycota/genética , Evolução Molecular , Genoma Fúngico , Anotação de Sequência Molecular , Peroxidases/genética , FilogeniaRESUMO
The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left "naked" (free from the nuclear lamina). Thus, farnesylation of lamin B1--but not lamin B2--is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.
Assuntos
Encéfalo/embriologia , Movimento Celular/fisiologia , Cromatina/metabolismo , Lamina Tipo B/metabolismo , Lâmina Nuclear/metabolismo , Prenilação de Proteína/fisiologia , Animais , Cromatina/genética , Lamina Tipo B/genética , Camundongos , Camundongos Transgênicos , Lâmina Nuclear/genéticaRESUMO
The three lipin phosphatidate phosphatase (PAP) enzymes catalyze a step in glycerolipid biosynthesis, the conversion of phosphatidate to diacylglycerol. Lipin-1 is critical for lipid synthesis and homeostasis in adipose tissue, liver, muscle, and peripheral nerves. Little is known about the physiological role of lipin-2, the predominant lipin protein present in liver and the deficient gene product in the rare disorder Majeed syndrome. By using lipin-2-deficient mice, we uncovered a functional relationship between lipin-1 and lipin-2 that operates in a tissue-specific and age-dependent manner. In liver, lipin-2 deficiency led to a compensatory increase in hepatic lipin-1 protein and elevated PAP activity, which maintained lipid homeostasis under basal conditions, but led to diet-induced hepatic triglyceride accumulation. As lipin-2-deficient mice aged, they developed ataxia and impaired balance. This was associated with the combination of lipin-2 deficiency and an age-dependent reduction in cerebellar lipin-1 levels, resulting in altered cerebellar phospholipid composition. Similar to patients with Majeed syndrome, lipin-2-deficient mice developed anemia, but did not show evidence of osteomyelitis, suggesting that additional environmental or genetic components contribute to the bone abnormalities observed in patients. Combined lipin-1 and lipin-2 deficiency caused embryonic lethality. Our results reveal functional interactions between members of the lipin family in vivo, and a unique role for lipin-2 in central nervous system biology that may be particularly important with advancing age. Additionally, as has been observed in mice and humans with lipin-1 deficiency, the pathophysiology in lipin-2 deficiency is associated with dysregulation of lipid intermediates.
Assuntos
Envelhecimento/fisiologia , Cerebelo/fisiologia , Homeostase/fisiologia , Fígado/fisiologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Análise de Variância , Animais , Contagem de Células Sanguíneas , Western Blotting , Osso e Ossos/diagnóstico por imagem , Cerebelo/metabolismo , Primers do DNA/genética , Galactosídeos , Perfilação da Expressão Gênica , Técnicas Histológicas , Imuno-Histoquímica , Indóis , Fígado/metabolismo , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/deficiência , Fosfatidato Fosfatase/deficiência , Fosfolipídeos/metabolismo , Reação em Cadeia da Polimerase , Desempenho Psicomotor , Radiografia , Reflexo de Sobressalto/fisiologiaRESUMO
Fungal fermentation of food and agricultural by-products holds promise for improving food sustainability and security. However, the molecular basis of fungal waste-to-food upcycling remains poorly understood. Here we use a multi-omics approach to characterize oncom, a fermented food traditionally produced from soymilk by-products in Java, Indonesia. Metagenomic sequencing of samples from small-scale producers in Western Java indicated that the fungus Neurospora intermedia dominates oncom. Further transcriptomic, metabolomic and phylogenomic analysis revealed that oncom-derived N. intermedia utilizes pectin and cellulose degradation during fermentation and belongs to a genetically distinct subpopulation associated with human-generated by-products. Finally, we found that N. intermedia grew on diverse by-products such as fruit and vegetable pomace and plant-based milk waste, did not encode mycotoxins, and could create foods that were positively perceived by consumers outside Indonesia. These results showcase the traditional significance and future potential of fungal fermentation for creating delicious and nutritious foods from readily available by-products.
Assuntos
Fermentação , Alimentos Fermentados , Neurospora , Filogenia , Alimentos Fermentados/microbiologia , Neurospora/genética , Neurospora/metabolismo , Neurospora/classificação , Indonésia , Microbiologia de Alimentos , Metagenômica , Humanos , Metabolômica/métodosRESUMO
Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1(Δ/Δ)Lmnb2(Δ/Δ)). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice. Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.
Assuntos
Proliferação de Células , Cabelo/crescimento & desenvolvimento , Queratinócitos/citologia , Lamina Tipo B/deficiência , Pele/crescimento & desenvolvimento , Células 3T3 , Animais , Células Cultivadas , Feminino , Cabelo/metabolismo , Células HeLa , Humanos , Queratinócitos/metabolismo , Lamina Tipo B/genética , Masculino , Camundongos , Camundongos Knockout , Pele/metabolismoRESUMO
In the North-Central United States, lowland ecotype switchgrass can increase yield by up to 50% compared with locally adapted but early flowering cultivars. However, lowland ecotypes are not winter tolerant. The mechanism for winter damage is unknown but previously has been associated with late flowering time. This study investigated heading date (measured for two years) and winter survivorship (measured for three years) in a multi-generation population generated from two winter-hardy lowland individuals and diverse southern lowland populations. Sequencing data (311,776 markers) from 1,306 individuals were used to evaluate genome-wide trait prediction through cross-validation and progeny prediction (n = 52). Genetic variance for heading date and winter survivorship was additive with high narrow-sense heritability (0.64 and 0.71, respectively) and reliability (0.68 and 0.76, respectively). The initial negative correlation between winter survivorship and heading date degraded across generations (F1r = -0.43, pseudo-F2r = -0.28, pseudo-F2 progeny r = -0.15). Within-family predictive ability was moderately high for heading date and winter survivorship (0.53 and 0.52, respectively). A multi-trait model did not improve predictive ability for either trait. Progeny predictive ability was 0.71 for winter survivorship and 0.53 for heading date. These results suggest that lowland ecotype populations can obtain sufficient survival rates in the northern United States with two or three cycles of effective selection. Despite accurate genomic prediction, naturally occurring winter mortality successfully isolated winter tolerant genotypes and appears to be an efficient method to develop high-yielding, cold-tolerant switchgrass cultivars.
Assuntos
Panicum , Humanos , Panicum/genética , Sobrevivência , Reprodutibilidade dos Testes , Genoma de Planta , Genômica/métodosRESUMO
Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.