Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 134: 105415, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049369

RESUMO

Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter ℓ0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726), similarly to the validated finite element method (Dahan et al., 2022). The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures.


Assuntos
Fraturas do Ombro , Tomografia Computadorizada por Raios X , Idoso , Análise de Elementos Finitos , Humanos , Úmero , Fenômenos Mecânicos , Fraturas do Ombro/cirurgia , Tomografia Computadorizada por Raios X/métodos
2.
Bone Joint J ; 102-B(5): 638-645, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32349590

RESUMO

AIMS: Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. METHODS: Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves). RESULTS: The sensitivity of SFR was 100% compared with 88% for the Mirels score, and the specificity of SFR was 67% compared with 38% for the Mirels score. The AUC was 0.905 for SFR compared with 0.578 for the Mirels score (p = 0.008). CONCLUSION: All the patients who sustained a pathological fracture of the femur had an SFR of > 1.48. CTFEA was far better at predicting the risk of fracture and its location accurately compared with the Mirels score. CTFEA is quick and automated and can be incorporated into the protocol of CT scanners. Cite this article: Bone Joint J 2020;102-B(5):638-645.


Assuntos
Fraturas do Fêmur/diagnóstico por imagem , Neoplasias Femorais/diagnóstico por imagem , Neoplasias Femorais/secundário , Fraturas Espontâneas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA