Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0275134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137117

RESUMO

Eicosanoids, which are oxygenated derivatives of polyunsaturated fatty acids (PUFAs), serve as signaling molecules that regulate spermatogenesis in mammals. However, their roles in crustacean sperm development remain unknown. In this study, the testis and vas deferens of the black tiger shrimp Penaeus monodon were analyzed using ultra-high performance liquid chromatography coupled with Orbitrap high resolution mass spectrometry. This led to the identification of three PUFAs and ten eicosanoids, including 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and (±)15-hydroxyeicosapentaenoic acid ((±)15-HEPE), both of which have not previously been reported in crustaceans. The comparison between wild-caught and domesticated shrimp revealed that wild-caught shrimp had higher sperm counts, higher levels of (±)8-HEPE in testes, and higher levels of prostaglandin E2 (PGE2) and prostaglandin F2α in vas deferens than domesticated shrimp. In contrast, domesticated shrimp contained higher levels of (±)12-HEPE, (±)18-HEPE, and eicosapentaenoic acid (EPA) in testes and higher levels of 15d-PGJ2, (±)12-HEPE, EPA, arachidonic acid (ARA), and docosahexaenoic acid (DHA) in vas deferens than wild-caught shrimp. To improve total sperm counts in domesticated shrimp, these broodstocks were fed with polychaetes, which contained higher levels of PUFAs than commercial feed pellets. Polychaete-fed shrimp produced higher total sperm counts and higher levels of PGE2 in vas deferens than pellet-fed shrimp. In contrast, pellet-fed shrimp contained higher levels of (±)12-HEPE, (±)18-HEPE, and EPA in testes and higher levels of (±)12-HEPE in vas deferens than polychaete-fed shrimp. These data suggest a positive correlation between high levels of PGE2 in vas deferens and high total sperm counts as well as a negative correlation between (±)12-HEPE in both shrimp testis and vas deferens and total sperm counts. Our analysis not only confirms the presence of PUFAs and eicosanoids in crustacean male reproductive organs, but also suggests that the eicosanoid biosynthesis pathway may serve as a potential target to improve sperm production in shrimp.


Assuntos
Penaeidae , Animais , Ácido Araquidônico , Dinoprosta , Dinoprostona/metabolismo , Ácidos Docosa-Hexaenoicos , Eicosanoides , Ácido Eicosapentaenoico , Ácidos Graxos Insaturados , Masculino , Mamíferos/metabolismo , Prostaglandinas E , Sêmen/metabolismo , Contagem de Espermatozoides , Espermatozoides/metabolismo
2.
PLoS One ; 16(4): e0250276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886622

RESUMO

Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.


Assuntos
Penaeidae/enzimologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Sequência de Bases , Inibidores de Ciclo-Oxigenase/farmacologia , Análise Mutacional de DNA/métodos , DNA Complementar/genética , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Feminino , Glicosilação/efeitos dos fármacos , Células HEK293 , Hemolinfa/metabolismo , Humanos , Ibuprofeno/farmacologia , Peso Molecular , Ovário/metabolismo , Prostaglandina-Endoperóxido Sintases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA