Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 586(7831): 790-795, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788725

RESUMO

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Serina/deficiência , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Alanina/biossíntese , Alanina/metabolismo , Alanina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dieta , Feminino , Glicina/biossíntese , Glicina/deficiência , Glicina/metabolismo , Glicina/farmacologia , Células HCT116 , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Serina/sangue , Serina/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esferoides Celulares/patologia , Esfingolipídeos/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723385

RESUMO

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Assuntos
Burkholderia , Nanopartículas Metálicas , Proteoma , Prata , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proteoma/metabolismo , Burkholderia/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo
3.
Water Sci Technol ; 87(9): 2128-2141, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186619

RESUMO

Falling film evaporation technology is widely used in the treatment of salt-containing wastewater in coal chemical industry. However, there is still a lack of research on the inlet method of vertical falling film evaporation tubes. In this paper, the heat and mass transfer processes of saline wastewater under vertical and tangential inlets were investigated using numerical simulations. On this basis, the differences in flow and heat transfer processes between saline wastewater and pure water under tangential inlet were investigated. The results showed that the flow velocity of saline wastewater with a falling film evaporation tube in a tangential inlet mode was larger. Meanwhile, the turbulence in this way was more intense and the fluid temperature in the vertical tube was higher. Saline wastewater has higher temperature and smaller liquid volume fraction than pure water liquid membrane in the range of 193-1,000 mm from the inlet. The use of tangential inlet method to treat salt-containing wastewater has higher evaporation efficiency and is a very effective way to guide the improvement of heat transfer efficiency.


Assuntos
Temperatura Alta , Águas Residuárias , Baías , Temperatura
4.
Environ Res ; 210: 112910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151659

RESUMO

The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold.


Assuntos
Ouro , Nanopartículas Metálicas , Burkholderia , Elétrons , Riboflavina
5.
Ecotoxicol Environ Saf ; 211: 111914, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33454593

RESUMO

Bioremediation of Cd contaminated environments can be assisted by plant-growth-promoting bacteria (PGPB) enabling plant growth in these sites. Here a gram-negative Burkholderia contaminans ZCC was isolated from mining soil at a copper-gold mine. When exposed to Cd(II), ZCC displayed high Cd resistance and the minimal inhibitory concentration was 7 mM in LB medium. Complete genome analysis uncovered B. contaminans ZCC contained 3 chromosomes and 2 plasmids. One of these plasmids was shown to contain a multitude of heavy metal resistance determinants including genes encoding a putative Cd-translocating PIB-type ATPase and an RND-type related to the Czc-system. These additional heavy metal resistance determinants are likely responsible for the increased resistance to Cd(II) and other heavy metals in comparison to other strains of B. contaminans. B. contaminans ZCC also displayed PGPB traits such as 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore production, organic and inorganic phosphate solubilization and indole acetic acid production. Moreover, the properties and Cd(II) binding characteristics of extracellular polymeric substances was investigated. ZCC was able to induce extracellular polymeric substances production in response to Cd and was shown to be chemically coordinated to Cd(II). It could promote the growth of soybean in the presence of elevated concentrations of Cd(II). This work will help to better understand processes important in bioremediation of Cd-contaminated environment.


Assuntos
Adaptação Fisiológica/fisiologia , Burkholderia/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Cádmio/metabolismo , Ácidos Indolacéticos , Metais Pesados/análise , Mineração , Desenvolvimento Vegetal , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Glycine max/metabolismo
6.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941809

RESUMO

In this study, novel composite titanium-based metal-organic framework (MOF) beads were synthesized from titanium based metal organic framework MIL-125 and chitosan (CS) and used to remove Pb(II) from wastewater. The MIL-125-CS beads were prepared by combining the titanium-based MIL-125 MOF and chitosan using a template-free solvothermal approach under ambient conditions. The surface and elemental properties of these beads were analyzed using scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopies, as well as thermal gravimetric analysis. Moreover, a series of experiments designed to determine the influences of factors such as initial Pb(II) concentration, pH, reaction time and adsorption temperature was conducted. Notably, it was found that the adsorption of Pb(II) onto the MIL-125-CS beads reached equilibrium in 180 min to a level of 407.50 mg/g at ambient temperature. In addition, kinetic and equilibrium experiments provided data that were fit to the Langmuir isotherm model and pseudo-second-order kinetics. Furthermore, reusability tests showed that MIL-125-CS retained 85% of its Pb(II)-removal capacity after five reuse cycles. All in all, we believe that the developed MIL-125-CS beads are a promising adsorbent material for the remediation of environmental water polluted by heavy metal ions.


Assuntos
Quitosana/química , Chumbo/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/química
7.
Biotechnol Bioeng ; 114(7): 1593-1602, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28295163

RESUMO

Synechocystis sp. strain PCC 6803 has been widely used as a photo-biorefinery chassis. Based on its genome annotation, this species contains a complete TCA cycle, an Embden-Meyerhof-Parnas pathway (EMPP), an oxidative pentose phosphate pathway (OPPP), and an Entner-Doudoroff pathway (EDP). To evaluate how Synechocystis 6803 catabolizes glucose under heterotrophic conditions, we performed 13 C metabolic flux analysis, metabolite pool size analysis, gene knockouts, and heterologous expressions. The results revealed a cyclic mode of flux through the OPPP. Small, but non-zero, fluxes were observed through the TCA cycle and the malic shunt. Independent knockouts of 6-phosphogluconate dehydrogenase (gnd) and malic enzyme (me) corroborated these results, as neither mutant could grow under dark heterotrophic conditions. Our data also indicate that Synechocystis 6803 metabolism relies upon oxidative phosphorylation to generate ATP from NADPH under dark or insufficient light conditions. The pool sizes of intermediates in the TCA cycle, particularly acetyl-CoA, were found to be several fold lower in Synechocystis 6803 (compared to E. coli metabolite pool sizes), while its sugar phosphate intermediates were several-fold higher. Moreover, negligible flux was detected through the native, or heterologous, EDP in the wild type or Δgnd strains under heterotrophic conditions. Comparing photoautotrophic, photomixotrophic, and heterotrophic conditions, the Calvin cycle, OPPP, and EMPP in Synechocystis 6803 possess the ability to regulate their fluxes under various growth conditions (plastic), whereas its TCA cycle always maintains at low levels (rigid). This work also demonstrates how genetic profiles do not always reflect actual metabolic flux through native or heterologous pathways. Biotechnol. Bioeng. 2017;114: 1593-1602. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Plasticidade Celular/fisiologia , Análise do Fluxo Metabólico/métodos , Metaboloma/fisiologia , Oxigênio/metabolismo , Synechocystis/fisiologia , Consumo de Oxigênio/fisiologia , Proteoma/metabolismo
8.
Mar Drugs ; 14(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657093

RESUMO

Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKß, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.

9.
Water Sci Technol ; 74(12): 2987-2996, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997408

RESUMO

Extracellular polymeric substances (EPS) play crucial roles in bio-aggregate formation and survival of bacterial cells. To develop an effective but harmless method for EPS extraction from Shewanella oneidensis MR-1, five extraction methods, i.e. centrifugation (control), heating (40, 45, 50, and 60 °C), and treatments with H2SO4, ethylenediaminetetraacetic acid (EDTA) and NaOH, were examined, respectively. Results from scanning electron microscope and flow cytometric analyses indicate that MR-1 cells were severely broken by H2SO4, NaOH and heating temperature ≥45 °C. Proteins and polysaccharides in EPS extracted by heating at 40 °C were 7.12 and 1.60 mg g-1 dry cell, respectively. Although EDTA treatment had a relatively lower yield of EPS (proteins and polysaccharides yields of 5.15 and 1.30 mg g-1 dry cell, respectively), cell lysis was barely found after EPS extraction. Three peaks were identified from the three-dimensional excitation-emission matrix spectrum of each EPS sample, suggesting the presence of protein-like substances. Furthermore, the peak intensity was in good accordance with protein concentration measured by the chemical analysis. In short, heating (40 °C) and EDTA treatments were found the most suitable methods for EPS extraction considering the cell lysis and EPS content, composition and functional groups together.


Assuntos
Biopolímeros/isolamento & purificação , Fracionamento Químico/métodos , Polissacarídeos/isolamento & purificação , Proteínas/isolamento & purificação , Shewanella/química , Citometria de Fluxo , Microscopia Eletrônica de Varredura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Zhonghua Nan Ke Xue ; 22(6): 501-505, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-28963837

RESUMO

OBJECTIVE: To study the correlation of high-risk human papillomavirus 16 and 18 (HPV16/18) infections with the risk of prostate cancer (PCa) and their association with the clinicopathologic indexes of PCa. METHODS: We collected tissue samples from 75 cases of PCa and 73 cases of benign prostatic hyperplasia (BPH). We detected HPV16/18 infections in the samples by immunohistochemistry and PCR combined with reverse dot blot (RDB) assay. RESULTS: Immunohistochemistry revealed 16 cases of HPV16/18 positive in the PCa (21.3%) and 7 cases in the BPH samples (9.5%), with statistically significant difference between the two groups (P=0.049). PCR combined with RDB assay showed 17 cases of HPV16 infection (22.6%) and 13 cases of HPV18 infection (17.8%), including 4 cases of HPV16/18 positive, in the PCa group, remarkably higher than 6 cases of HPV16 infection (8.2%), 3 cases of HPV18 infection (4.1%) and no HPV16/18 positive in the BPH controls (P=0.001). No significant differences were observed between the result of immunohistochemistry and that of PCR combined with RDB assay (P=0.069). The risk of HPV16/18 infections was found to be correlated with the clinical T-stage and Gleason score of PCa (P<0.05 ) but not with the patient's age, PSA level or lymph node metastasis (P>0.05 ). CONCLUSIONS: High-risk HPV16/18 infections are correlated with the risk of prostate cancer.


Assuntos
Infecções por Papillomavirus/epidemiologia , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/virologia , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Gradação de Tumores , Reação em Cadeia da Polimerase , Hiperplasia Prostática/epidemiologia , Hiperplasia Prostática/virologia
11.
J Bacteriol ; 197(5): 943-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535269

RESUMO

This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on (13)C-metabolic flux analysis ((13)C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the γ-aminobutyric acid pathway or α-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria.


Assuntos
Synechocystis/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Ciclo do Ácido Cítrico , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Metabolismo Energético , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Processos Heterotróficos , Luz , NADP/metabolismo , Oxirredução , Fotossíntese , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Synechocystis/enzimologia , Synechocystis/genética , Synechocystis/efeitos da radiação
12.
Anal Biochem ; 477: 86-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25527068

RESUMO

(13)C metabolism analysis of a microbial community is often hindered by the time-consuming and complicated separation procedure for a single species. However, a "reporter protein," produced uniquely by one cell type, retains (13)C fingerprint information in microbial consortia. This study describes the use of photosystem I (PSI), a multi-subunit protein complex universally found in oxygenic phototrophs, as a reliable reporter protein to probe microalgal metabolism (i.e., cyanobacterium Synechocystis sp. PCC 6803) in a mixed culture with heterotrophic bacteria (i.e., Escherichia coli). We demonstrate that efficient purification of PSI and subsequent (13)C-based amino acid analyses may decipher photomixotrophic metabolism of Synechocystis 6803 in the coculture. This study also indicates that a supplement of NaHCO3 at high concentration could significantly improve the robustness of cyanobacterial growth against bacterial contamination.


Assuntos
Técnicas de Cocultura/métodos , Escherichia coli/crescimento & desenvolvimento , Processos Heterotróficos , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Isótopos de Carbono/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Bicarbonato de Sódio/farmacologia , Synechocystis/efeitos dos fármacos
13.
Mar Drugs ; 13(10): 6210-25, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437419

RESUMO

Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.


Assuntos
Adjuvantes Imunológicos/farmacologia , Quitosana/farmacologia , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Adjuvantes Imunológicos/química , Animais , Linhagem Celular , Quitosana/química , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Microb Cell Fact ; 13(1): 42, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24642094

RESUMO

This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields - the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route - in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories.


Assuntos
Carbono/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Metabolismo Energético , Análise do Fluxo Metabólico , NAD/metabolismo
15.
IEEE Trans Cybern ; 54(4): 2618-2627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37819825

RESUMO

This article mainly studies the problem of impulse consensus of multiagent systems under communication constraints and time delay. Considering the limited communication bandwidth of the agent, global and partial saturation constraints are considered. In addition, so as to further improve communication efficiency by reducing communication frequency, the novel control protocol combining event-triggered strategy and general impulse control protocol is proposed. Under this kind of novel control protocol, the communication frequency of multiagent systems can be reduced while avoiding "Zeno behavior." Through theoretical analysis, sufficient conditions for the systems to achieve consensus are obtained for the above two saturation constraint cases. In the end, the effectiveness of the novel protocols is proved by providing two different simulation instances.

16.
Microb Cell Fact ; 12: 117, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24274114

RESUMO

BACKGROUND: The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. RESULTS: We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. CONCLUSIONS: We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the lactate production rate by the engineered strain reached a maximum of ~0.19 g D-lactate/L/day (in the presence of acetate). This study serves as a good complement to the recent metabolic engineering work done on Synechocystis 6803 for L-lactate production. Thereby, our study may facilitate future developments in the use of cyanobacterial cell factories for the commercial production of high quality PLA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Polímeros/metabolismo , Proteínas de Bactérias/química , Engenharia Metabólica , Plasmídeos , Poliésteres
17.
Mar Drugs ; 11(8): 2894-916, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23945601

RESUMO

Cyanobacteria (blue-green algae) play profound roles in ecology and biogeochemistry. One model cyanobacterial species is the unicellular cyanobacterium Synechocystis sp. PCC 6803. This species is highly amenable to genetic modification. Its genome has been sequenced and many systems biology and molecular biology tools are available to study this bacterium. Recently, researchers have put significant efforts into understanding and engineering this bacterium to produce chemicals and biofuels from sunlight and CO2. To demonstrate our perspective on the application of this cyanobacterium as a photosynthesis-based chassis, we summarize the recent research on Synechocystis 6803 by focusing on five topics: rate-limiting factors for cell cultivation; molecular tools for genetic modifications; high-throughput system biology for genome wide analysis; metabolic modeling for physiological prediction and rational metabolic engineering; and applications in producing diverse chemicals. We also discuss the particular challenges for systems analysis and engineering applications of this microorganism, including precise characterization of versatile cell metabolism, improvement of product rates and titers, bioprocess scale-up, and product recovery. Although much progress has been achieved in the development of Synechocystis 6803 as a phototrophic cell factory, the biotechnology for "Compounds from Synechocystis" is still significantly lagging behind those for heterotrophic microbes (e.g., Escherichia coli).


Assuntos
Fotossíntese/fisiologia , Processos Fototróficos/fisiologia , Synechocystis/metabolismo , Biotecnologia/métodos , Genoma Bacteriano , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Synechocystis/genética
18.
Mar Drugs ; 11(10): 3582-600, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084781

RESUMO

This study was carried out to investigate the protective effects of chitosan nanoparticles (CNP) against hydrogen peroxide (H2O2)-induced oxidative damage in murine macrophages RAW264.7 cells. After 24 h pre-incubation with CNP (25-200 µg/mL) and chitosan (CS) (50-200 µg/mL, as controls), the viability loss in RAW264.7 cells induced by H2O2 (500 µM) for 12 h was markedly restored in a concentration-dependent manner as measured by MTT assay (P < 0.05) and decreased in cellular LDH release (P < 0.05). Moreover, CNP also exerted preventive effects on suppressing the production of lipid peroxidation such as malondialdehyde (MDA) (P < 0.05), restoring activities of endogenous antioxidant including superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) (P < 0.05), along with increasing total antioxidant capacity (T-AOC) (P < 0.05). In addition, pre-incubation of CNP with RAW264.7 cells for 24 h resulted in the increase of the gene expression level of endogenous antioxidant enzymes, such as MnSOD and GSH-Px (P < 0.05). At the same concentration, CNP significantly decreased LDH release and MDA (P < 0.05) as well as increased MnSOD, GSH-Px, and T-AOC activities (P < 0.05) as compared to CS. Taken together, our findings suggest that CNP can more effectively protect RAW264.7 cells against oxidative stress by H2O2 as compared to CS, which might be used as a potential natural compound-based antioxidant in the functional food and pharmaceutical industries.


Assuntos
Quitosana/farmacologia , Peróxido de Hidrogênio/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Glutationa Peroxidase/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo
19.
Huan Jing Ke Xue ; 44(8): 4530-4540, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694647

RESUMO

In order to investigate the effects of distiller's lees biochar and different modified distiller's lees biochars on soil properties, pot experiments were conducted to study the effects of different soil amendments (CK:no amendment, JZ:distiller's lees biochar, TiO2/JZ:Nano-TiO2 supported by distiller's lees biochar, and Fe/TiO2/JZ:titanium dioxide supported by iron-modified distiller's lees biochar) and the application rates of different amendments (1%, 3%, and 5%) on the characteristics of soil nutrients and enzyme activities under irrigation-drought rotation. The results showed the following:①the modified distiller's lees biochar significantly increased soil pH and CEC (P<0.05). At the 5% Fe-TiO2/JZ addition level, the soil pH reached 7.95 during the rice season, an increase of 2.3 units compared with that in the CK treatment; the CEC reached 12.06 cmol·kg-1, increasing by 21.38%; the soil pH reached 5.99 during the cabbage season and increased by 1.5 units compared with that in the CK treatment; and CEC reached 8.91 cmol·kg-1 at 3% Fe-TiO2/JZ addition and increased by 13.11%. ②At the same time, the contents of soil total nitrogen and available phosphorus were significantly increased (P<0.05). Compared with that in the CK treatment, the soil total nitrogen of 5% JZ, 5% TiO2/JZ, and 5% Fe-TiO2/JZ increased by 20.56%, 85.04%, and 59.61% in the rice season and 12.39%, 22.68%, and 23.70% in the cabbage season, respectively. In the rice season, the increase in soil available P under 5% Fe-TiO2/JZ was the highest, reaching 10.49 mg·kg-1, which was 1.64 times that under CK treatment. In the cabbage season, the soil available phosphorus (P) reached 90.15 mg·kg-1 under 5% TiO2/JZ addition, which increased by 93.38% compared with that in the CK treatment. ③Modified distiller's lees biochar increased catalase and urease activities and decreased alkali-hydrolytic nitrogen content and acid phosphatase activity. At the 3% addition level, catalase activity increased by 12.19%, 48.17%, and 37.30% in the rice season and 5.95%, 8.34%, and 17.42% in the cabbage season, respectively. In the rice season, the soil urease activity reached the maximum under 5% Fe-TiO2/JZ addition, which was increased by 40.90% compared with that in the CK treatment. In the cabbage season, the soil urease activity reached the maximum under 5% TiO2/JZ addition, which was increased by 58.53% compared with that in the CK treatment. The activity of acid phosphatase decreased by 5.39%-24.66% in the rice season and by 54.46%-61.40% in the cabbage season. Distiller's lees biochar and modified distiller's lees biochar could effectively increase soil pH and soil nutrient content, thus affecting soil enzyme activities. The application of iron modified-titanium dioxide-loaded distiller's lees biochar of 3% to 5% in acidic purple soil is more suitable.


Assuntos
Oryza , Urease , Catalase , Ferro , Nitrogênio , Nutrientes , Fósforo
20.
Chemosphere ; 341: 140094, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678589

RESUMO

Microbial nitrogen fixation is a fundamental process in the nitrogen cycle, providing a continuous supply of biologically available nitrogen essential for life. In this study, we combined cerium oxide-doped carbon dots (CeO2/CDs) with electroactive nitrogen-fixing bacterium Azospirillum humicireducens SgZ-5T to enhance nitrogen fixation through ammonium production. Our research demonstrates that treatment of SgZ-5T cells with CeO2/CDs (0.2 mg mL-1) resulted in a 265.70% increase in ammonium production compared to SgZ-5T cells alone. CeO2/CDs facilitate electron transfer in the biocatalytic process, thereby enhancing nitrogenase activity. Additionally, CeO2/CDs reduce the concentration of reactive oxygen species in SgZ-5T cells, leading to increased ammonium production. The upregulation of nifD, nifH and nifK gene expression upon incorporation of CeO2/CDs (0.2 mg mL-1) into SgZ-5T cells supports this observation. Our findings not only provide an economical and environmentally friendly approach to enhance biological nitrogen fixation but also hold potential for alleviating nitrogen fertilizer scarcity.


Assuntos
Amônia , Compostos de Amônio , Antioxidantes , Carbono , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA