Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 51(21): e109, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870450

RESUMO

Error-corrected next-generation sequencing (ecNGS) is an emerging technology for accurately measuring somatic mutations. Here, we report paired-end and complementary consensus sequencing (PECC-Seq), a high-accuracy ecNGS approach for genome-wide somatic mutation detection. We characterize a novel 2-aminoimidazolone lesion besides 7,8-dihydro-8-oxoguanine and the resulting end-repair artifacts originating from NGS library preparation that obscure the sequencing accuracy of NGS. We modify library preparation protocol for the enzymatic removal of end-repair artifacts and improve the accuracy of our previously developed duplex consensus sequencing method. Optimized PECC-Seq shows an error rate of <5 × 10-8 with consensus bases compressed from approximately 25 Gb of raw sequencing data, enabling the accurate detection of low-abundance somatic mutations. We apply PECC-Seq to the quantification of in vivo mutagenesis. Compared with the classic gpt gene mutation assay using gpt delta transgenic mice, PECC-Seq exhibits high sensitivity in quantitatively measuring dose-dependent mutagenesis induced by Aristolochic acid I (AAI). Moreover, PECC-Seq specifically characterizes the distinct genome-wide mutational signatures of AAI, Benzo[a]pyrene, N-Nitroso-N-ethylurea and N-nitrosodiethylamine and reveals the mutational signature of Quinoline in common mouse models. Overall, our findings demonstrate that high-accuracy PECC-Seq is a promising tool for genome-wide somatic mutagenesis quantification and for in vivo mutagenicity testing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Animais , Camundongos , Consenso , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos Transgênicos , Mutagênese/genética , Mutação , Análise de Sequência de DNA/métodos , Masculino
2.
Yi Chuan ; 46(2): 126-139, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340003

RESUMO

Mutation accumulation in somatic cells contributes to cancer development, aging and many non-malignant diseases. The true mutation frequency in normal cells is extremely low, which presents a challenge in detecting these mutations at such low frequencies. The emergence of next-generation sequencing (NGS) technology enables direct detection of rare mutations across the entire genome of any species. This breakthrough overcomes numerous limitations of traditional mutation detection techniques that rely on specific detection models and sites. However, conventional NGS is limited in its application for detecting low-frequency mutations due to its high sequencing error rate. To address this challenge, high-accuracy NGS sequencing techniques based on molecular consensus sequencing strategies have been developed. These techniques have the ability to correct sequencing errors, resulting in error rates lower than 10-7, are expected to serve as effective tools for low-frequency mutation detection. Error-corrected NGS (ecNGS) techniques hold great potential in various areas, including safety evaluation and research on environmental mutagens, risk assessment of cell and gene therapy drugs, population health risk monitoring, and fundamental research in life sciences. This review highlights a comprehensive review of the research progress in low-frequency mutation detection techniques based on NGS, and provides a glimpse into their potential applications. It also offers an outlook on the potential applications of these techniques, thereby providing valuable insights for further development, research, and application of this technology in relevant fields.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Taxa de Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tecnologia
3.
Ecotoxicol Environ Saf ; 245: 114089, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126550

RESUMO

Caenorhabditis elegans (C. elegans), an established model organism, has been widely used in environmental toxicology research. However, most of the current toxicity testing methods based on worms are time-consuming. In this study we aimed to develop an automated and highly-integrated platform for high-throughput and in situ toxicity testing. Considering the superiority of C. elegans as a neurotoxicological model, this platform mainly evaluates general toxicology and neurotoxicology endpoints, which are usually induced by metals and pesticides, the major environmental contaminants. Microplates were used as a worm culturing system, which have good compatibility with any commercial microplate applicable instruments. We developed a microfluidic-based module for worm dispensing, and an image acquisition/analysis module for monitoring worms and detecting toxicity endpoints in bright filed. These were collectively incorporated with a commercial pipetting workstation for automated food/drug delivery and a high-content analysis system for fluorescence detection. The integrated platform achieved an efficient on-demand worm dispensing, long-term maintenance, regular monitoring and imaging, survival assay and behavioral analyses, and visualized gene reporter assay. Moreover, "Lab on Web" was achieved by connecting the platform to the web for remote operation, worm monitoring, and phenotype calculation. To demonstrate the ability of the platform for automated toxicity testing assays; worms were treated with cadmium and longevity, neurotoxicity, developmental toxicity and gst-4 expression were evaluated. We determined its feasibility and proposed the potential application in high-throughput toxicity screening for environmental risk assessment in the nearest future.


Assuntos
Caenorhabditis elegans , Praguicidas , Animais , Cádmio/metabolismo , Cádmio/toxicidade , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Praguicidas/metabolismo , Praguicidas/toxicidade , Fenótipo
4.
Mutagenesis ; 36(1): 87-94, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367723

RESUMO

As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Taxa de Mutação , Pentosiltransferases/metabolismo , Animais , Benchmarking , Proteínas de Escherichia coli/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Pentosiltransferases/genética
5.
Arch Toxicol ; 94(10): 3475-3485, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737516

RESUMO

To improve the accuracy and the cost-efficiency of next-generation sequencing in ultralow-frequency mutation detection, we developed the Paired-End and Complementary Consensus Sequencing (PECC-Seq), a PCR-free duplex consensus sequencing approach. PECC-Seq employed shear points as endogenous barcodes to identify consensus sequences from the overlap in the shortened, complementary DNA strand-derived paired-end reads for sequencing error correction. With the high accuracy of PECC-Seq, we identified the characteristic base substitution errors introduced by the end-repair process of mechanical fragmentation-based library preparations, which were prominent at the terminal 7 bp of the library fragments in the 5'-NpCpA-3' and 5'-NpCpT-3' trinucleotide context. As demonstrated at the human genome scale (TK6 cells), after removing these potential end-repair artifacts from the terminal 7 bp, PECC-Seq could reduce the sequencing error frequency to mid-10-7 with a relatively low sequencing depth. For TA base pairs, the background error rate could be suppressed to mid-10-8. In mutagen-treated (6 µg/mL methyl methanesulfonate or 12 µg/mL N-nitroso-N-ethylurea) TK6, increases in mutagen treatment-related mutant frequencies could be detected, indicating the potential of PECC-Seq in detecting genome-wide ultra-rare mutations. In addition, our finding on the patterns of end-repair artifacts may provide new insights into further reducing technical errors not only for PECC-Seq, but also for other next-generation sequencing techniques.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Taxa de Mutação , Linhagem Celular , Consenso , Genoma Humano , Humanos , Mutação , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Mutagenesis ; 34(2): 165-171, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30590776

RESUMO

Metabolic activation is essential in standard in vitro genotoxicity test systems. At present, there is a lack of suitable cell models that can express the major characteristics of liver function for predicting substance toxicity in humans. Human-induced hepatocytes (hiHeps), which have been generated from fibroblasts by lentiviral expression of liver transcription factors, can express hepatic gene programs and can be expanded in vitro and display functional characteristics of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Our purpose was to investigate whether hiHeps could be used as a more suitable model for genotoxicity evaluation of chemicals. Therefore, a direct mutagen, methylmethanesulfonate (MMS), and five promutagens [2-nitrofluorene (2-NF), benzo[a]pyrene (B[a]P), aflatoxin B1, cyclophosphamide and N-nitrosodiethylamine] were tested by the cytokinesis-block micronucleus test and the comet assay. Results from genotoxicity tests showed that the micronucleus frequencies were significantly increased by all of the six clastogens tested. Moreover, MMS, 2-NF and B[a]P induced significant increases in the % Tail DNA in the comet assay. In conclusion, our findings from the preliminary study demonstrated that hiHeps could detect the genotoxicity of indirect carcinogens, suggesting their potential to be applied as an effective tool for in vitro genotoxicity assessments.


Assuntos
Dano ao DNA , Hepatócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico , Mutagênicos/toxicidade , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Células Cultivadas , Ensaio Cometa , Ciclofosfamida/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Dietilnitrosamina/toxicidade , Fluorenos/toxicidade , Hepatócitos/citologia , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Cariótipo , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , Testes de Mutagenicidade
8.
Mutagenesis ; 33(2): 153-160, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29462428

RESUMO

Flame retardant polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants (POPs). 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a representative PBDE congener with widespread distribution and relatively high toxicity potential. Although it has been reported that BDE-47 can cause DNA damage in various in vitro systems, few studies have provided in vivo genotoxicity information. The aim of the present study was to investigate the genotoxicity of BDE-47 in mice. Male gpt delta mice were administered BDE-47 by gavage at 0, 0.0015, 1.5, 10 and 30 mg/kg/day, and 6 days per week for six consecutive weeks. Before the first treatment, and at 2.5 and 5 weeks after the first treatment, peripheral blood was collected from tails and the micronucleus assay and the Pig-a gene mutation assay were performed. After the last treatment, the mutant frequencies of the gpt gene in the liver and the germ cells from seminiferous tubules were determined. All these assays failed to produce positive results, suggesting that BDE-47 was neither clastogenic nor mutagenic in both target and non-target tissues in gpt delta mice.


Assuntos
Proteínas de Escherichia coli/genética , Éteres Difenil Halogenados/toxicidade , Proteínas de Membrana/genética , Mutagênicos/toxicidade , Pentosiltransferases/genética , Animais , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fígado/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Testes para Micronúcleos , Testes de Mutagenicidade , Mutação
9.
Artigo em Inglês | MEDLINE | ID: mdl-37003652

RESUMO

The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.


Assuntos
Cisplatino , Dano ao DNA , Camundongos , Animais , Cisplatino/toxicidade , Camundongos Knockout , Divisão Celular , Carcinogênese , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
10.
J Nat Med ; 77(2): 251-261, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525161

RESUMO

Aristolochic acid (AA)-containing herbs have been prescribed for thousands of years as anti-inflammatory drugs, despite the active pharmaceutical ingredients remaining unclear. However, exposure to AAI and AAII has been proven to be a significant risk factor for severe nephropathy and carcinogenicity. AAIVa, an analogue abundant in AA-containing herbs, showed neither carcinogenicity nor nephrotoxicity in our study and other reports, implying that the pharmacological effects of AAIVa on inflammation are worth studying. Herein, we employed RAW 264.7 cells, the ear edema mouse model, and the lipopolysaccharide (LPS)-induced systematic inflammation model in TNF-IRES-Luc mice (tracking TNFα luciferase activities in real-time) to evaluate the anti-inframammary effect of AAIVa. Our results showed that AAIVa could decrease pro-inflammatory cytokines (TNFα and IL-6) production in LPS-stimulated RAW 264.7 cells, indicating its anti-inflammatory effects in vitro. Furthermore, the application of AAIVa (400 and 600 µg/ear) could significantly inhibit phorbol 12-myristate 13-acetate-induced ear edema, suggesting its topical anti-inflammatory activity in vivo. Moreover, LPS-stimulated TNF-IRES-Luc mice were used to investigate the onset and duration of AAIVa on systematic inflammation. A single dosage of AAIVa (100 mg/kg, i.g.) could suppress LPS-triggered inflammation, by decreasing luciferase activities of TNFα at 3 h in TNF-IRES-Luc mice. In addition, the online pharmacological databases predicted that AAIVa might target the regulation of T cell activation-related protein (ADA, ADORA2A, ERBB2) to exhibit anti-inflammatory effect. In conclusion, we demonstrated that AAIVa had anti-inflammatory effect for the first time; our findings are constructive for further studies on pharmacological mechanism of AAIVa.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Luciferases/uso terapêutico
11.
Environ Pollut ; 330: 121765, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142205

RESUMO

Based on previous exposure studies, benzene (BZ) has been classified as a human carcinogen and occupational exposure limit (OELs) for BZ has been set to be about 1 ppm around the world. However, health hazards have still been reported with exposure below the OEL. Thus, the OEL needs to be updated to reduce health risk. The overall aim of our study was therefore to generate new OEL for BZ via a benchmark dose (BMD) approach and based on quantitative and multi-endpoint genotoxicity assessments. Genotoxicities were determined using the novel human PIG-A gene mutation assay, the micronucleus (MN) test and the COMET assay in benzene-exposed workers. Among the 104 workers with below current OELs, they exhibited significantly higher PIG-A mutant frequencies (MFs) (15.96 ± 14.41 × 10-6) and MN frequencies (11.55 ± 6.83‰) than those among the controls (PIG-A MFs: 5.46 ± 4.56 × 10-6, MN frequencies: 4.51 ± 1.58 ‰), but no difference in the COMET assay. A significant association was also observed between BZ exposure doses and PIG-A MFs and MN frequencies (P < 0.001). Our results indicate that health hazards were induced among workers with below OEL exposures. Based on results from the PIG-A and MN assays, the lower confidence limit of the BMD (BMDL) were calculated to be 8.71 mg/m3-year and 0.44 mg/m3-year, respectively. Based on these calculations, the OEL for BZ was determined to be lower than 0.07 ppm. This value can be considered by regulatory agencies to set new exposure limits and to better protect workers.


Assuntos
Benzeno , Exposição Ocupacional , Humanos , Benzeno/toxicidade , Benchmarking , Exposição Ocupacional/análise , Dano ao DNA , Testes para Micronúcleos , China
12.
Artigo em Inglês | MEDLINE | ID: mdl-36868699

RESUMO

Environmental pollutants, such as quinoline (QN) and 4-methylquinoline (4-MeQ), may be genotoxic and carcinogenic. Earlier studies, including in vitro genotoxicity tests, indicated that 4-MeQ is more mutagenic than QN. However, we hypothesized that the methyl group of 4-MeQ favors detoxication over bioactivation, and this factor may be overlooked in in vitro tests that do not incorporate supplementation with cofactors for enzymes that catalyze conjugation reactions. We used human induced hepatocyte cells (hiHeps), which express such enzymes, and compared the genotoxicity of 4-MeQ and QN. We also carried out an in vivo micronucleus (MN) test in rat liver, since 4-MeQ is not genotoxic in rodent bone marrow. In the Ames test and the Tk gene mutation assay, with rat S9 activation, 4-MeQ was more mutagenic than QN. However, QN induced significantly higher MN frequencies in hiHeps and rat liver than did 4-MeQ. Furthermore, QN upregulated genotoxicity marker genes much more than did 4-MeQ. We also investigated the roles of two important detoxication enzymes, UDP-glucuronosyltransferases (UGTs) and cytosolic sulfotransferases (SULTs). When hiHeps were preincubated with hesperetin (UGT inhibitor) and 2,6-dichloro-4-nitrophenol (SULT inhibitor), MN frequencies were elevated approximately 1.5-fold for 4-MeQ, whereas no significant effects were seen for QN. This study shows that QN is more genotoxic than 4-MeQ, when the roles of SULTs and UGTs in detoxication are considered and our results may improve understanding the structure-activity relationships of quinoline derivatives.


Assuntos
Mutagênicos , Quinolinas , Animais , Humanos , Ratos , Núcleo Celular , Glucuronosiltransferase , Fígado , Quinolinas/toxicidade
13.
Food Chem Toxicol ; 178: 113872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271276

RESUMO

PIG-A gene mutations can be detected in humans, and PIG-A assays can potentially predict the risk of exposure to carcinogens. However, extensive, population-based studies to validate this are lacking. We studied a cohort of occupational coke oven workers with chronic high exposure to carcinogenic polycyclic aromatic hydrocarbons, which are well-studied genotoxins classified by the IARC as carcinogenic to humans. Peripheral blood erythrocytes of workers were assessed for gene mutations using a PIG-A assay, and chromosome damage using the cytokinesis-block micronucleus test with lymphocytes. Two sample populations from a non-industrialized city and new employees in industrial plants were selected as controls. We observed a significantly elevated PIG-A mutation frequency (MF) and increased frequencies of micronuclei (MN) and nuclear buds (NBUDs) in coke oven workers, compared with levels in the control groups. We found that the coke oven workers with different lengths of service had a relatively high mutation frequency. Overall, the study findings showed that occupational exposure of coke oven workers increases the genetic damage and the PIG-A MF could be a potential biomarker for risk assessment of carcinogen exposure.


Assuntos
Coque , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Biomarcadores , Coque/toxicidade , Dano ao DNA , Mutagênicos/toxicidade , Mutação , Exposição Ocupacional/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pirenos/toxicidade
14.
Toxicol Res (Camb) ; 10(6): 1153-1161, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34956618

RESUMO

Triclosan (TCS) is widely used and it bioaccumulates in humans. We found that TCS induced DNA damage in TK6 cell in our previous work. Herein, we performed a pilot assay of the TK6 cell/TK gene (TK+/-) mutation assay without metabolic activation for 24 h and found that TCS significantly induced mutation frequency. We further investigated the dose-response toxicity and genotoxicity of TCS. We combined the newly developed Pig-a gene mutation assay with bone marrow micronucleus (MN) test in a 19-day short-term study. ICR mice were administered orally with TCS at six dose levels from 0 to1000 mg/kg/day. We quantitatively assessed the dose-response relationships for the Pig-a assay, MN test, and organ coefficient data for possible points of departure (PoDs) by estimating the benchmark dose using PROAST software. We did not observe elevated Pig-a mutant frequency or MN frequency in TCS-treated mice. But a dose-dependent and statistically significant increase in liver organ coefficient data was observed. The PoD and acceptable daily intake based on organ toxicity were further developed and no greater than 1.82 and 0.00182 mg/kg/day, respectively, indicating that the toxicity of TCS may has been underestimated in previous studies and greater attention should be paid to low-level TCS exposure.

15.
Genes Environ ; 43(1): 25, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34158118

RESUMO

BACKGROUND: Gene mutation assays in transgenic rodents are useful tools to investigate in vivo mutagenicity in a target tissue. Using a lambda EG10 transgene containing reporter genes, gpt delta transgenic mice and rats have been developed to detect point mutations and deletions. The transgene is integrated in the genome and can be rescued through an in vitro packaging reaction. However, the packaging efficiency is lower in gpt delta rats than in mice, because of the transgene in gpt delta rats being heterozygous and in low copy number. To improve the packaging efficiency, we herein describe a newly developed homozygous gpt delta rat strain. RESULTS: The new gpt delta rat has a Wistar Hannover background and has been successfully maintained as homozygous for the transgene. The packaging efficiency in the liver was 4 to 8 times higher than that of existing heterozygous F344 gpt delta rats. The frequency of gpt point mutations significantly increased in the liver and bone marrow of N-nitroso-N-ethylurea (ENU)- and benzo[a]pyrene (BaP)-treated rats. Spi- deletion frequencies significantly increased in the liver and bone marrow of BaP-treated rats but not in ENU-treated rats. Whole genome sequencing analysis identified ≥ 30 copies of lambda EG10 transgenes integrated in rat chromosome 1. CONCLUSIONS: The new homozygous gpt delta rat strain showed a higher packaging efficiency, and could be useful for in vivo gene mutation assays in rats.

16.
Genes Environ ; 43(1): 54, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34879859

RESUMO

BACKGROUND: The PIG-A gene mutation assay is a valuable tool for measuring in vivo gene mutations in blood cells. The human PIG-A assay, used as a potential genotoxicity biomarker, is minimally invasive, sensitive, and cost-efficient; however, the relationship between carcinogen exposure and PIG-A mutations is not well understood. METHODS: We investigated the genotoxic effect of red blood cells using PIG-A assay and lymphocyte cytokinesis-block micronucleus test in barbecue restaurant workers (N = 70) exposed to polycyclic aromatic hydrocarbons (PAHs) and self-identified healthy control subjects (N = 56). Urinary PAH metabolites were measured to evaluate internal exposure levels. RESULTS: Multivariate Poisson regression showed that the PAH-exposed workers exhibited significantly higher PIG-A mutant frequency (MF) (8.04 ± 6.81 × 10- 6) than did the controls (5.56 ± 5.26 × 10- 6) (RR = 0.707, 95% CI: 0.615-0.812, P < 0.001). These results indicate that PAH exposure is a risk factor for elevated PIG-A MF. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in the PAH-exposed workers (MN: 3.06 ± 2.07 ‰, NBUD: 1.38 ± 1.02 ‰) were also significantly higher than in the controls (MN: 1.46 ± 0.64 ‰, P < 0.001; NBUD: 0.70 ± 0.60 ‰, P < 0.001). Additionally, PIG-A MFs showed better associations with several urinary hydroxylated PAH metabolites (P2-OH-Flu = 0.032, r2-OH-Flu = 0. 268; P2-OH-Phe = 0.022, r2-OH-Phe = 0.286; P3-OH-Phe = 0.0312, r3-OH-Phe = 0.270; P4-OH-Phe = 0.018, r4-OH-Phe = 0.296), while the increase in MN, NPB, and NBUD frequencies was not associated with any OH-PAH metabolites; and high-PAH-exposed workers showed the highest PIG-A MFs. Furthermore, there was a significant association between PIG-A MF and PAH exposure levels (Chi-square test for trend, P = 0.006). CONCLUSIONS: Our results indicate that an increase in PIG-A MF in barbecue workers could reflect the response to PAH exposure, providing evidence of its potential as a genotoxicity biomarker in human risk assessment.

17.
Genes Environ ; 42: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256870

RESUMO

INTRODUCTION: Various challenges have been overcome with regard to applying 'omics technologies for chemical risk assessments. Previously we published results detailing targeted mRNA sequencing (RNA-Seq) on a next generation sequencer using intact RNA derived from freshly frozen rat liver tissues. We successfully discriminated genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) using 11 selected marker genes. Based on this, we next attempted to use formalin-fixed paraffin-embedded (FFPE) pathology specimens for RNA-Seq analyses. FINDINGS: In this study we performed FFPE RNA-Seq to compare a typical GTHC, 2-acetylaminofluorene (AAF) to genotoxicity equivocal p-cresidine (CRE). CRE is used as a synthetic chemical intermediate, and this compound is classified as an IARC 2B carcinogen and is mutagenic in S. typhimurium, which is non-genotoxic to rat livers as assessed by single strand DNA damage analysis. RNA-Seq was used to examine liver FFPE samples obtained from groups of five 10-week-old male F344 rats that were fed with chemicals (AAF: 0.025% and CRE: 1% in food) for 4 weeks or from controls that were fed a basal diet. We extracted RNAs from FFPE samples and RNA-Seq was performed on a MiniSeq (Illumina) using the TruSeq custom RNA panel. AAF induced remarkable differences in the expression of eight genes (Aen, Bax, Btg2, Ccng1, Gdf15, Mbd1, Phlda3 and Tubb4b) from that in the control group, while CRE only induced expression changes in Gdf15, as shown using Tukey's test. Gene expression profiles for nine genes (Aen, Bax, Btg2, Ccng1, Cdkn1a, Gdf15, Mbd1, Phlda3, and Plk2) differed.between samples treated with AAF and CRE. Finally, principal component analysis (PCA) of 12 genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) using our previous Open TG-GATE data plus FFPE-AAF and FFPE-CRE successfully differentiated FFPE-AAF, as GTHC, from FFPE-CRE, as NGHTC. CONCLUSION: Our results suggest that FFPE RNA-Seq and PCA are useful for evaluating typical rat GTHCs and NGTHCs.

18.
J Toxicol Sci ; 45(3): 117-129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147635

RESUMO

Silica nanoparticles (SiO2 NPs) are widely used in daily life and can enter organisms through several pathways, often causing unpredictable toxicity. Although SiO2 NPs are known to cause damage to the respiratory system, little is known about their oral toxicity, and their potential harm to the reproductive system is unclear. In this study, we used a Caenorhabditis elegans model to clarify SiO2 NPs oral toxicity in vivo and explore their effect on the reproductive system. We exposed C. elegans to 0.25, 0.5 and 1 mg /mL SiO2 NPs for 24 hr. Our results showed that SiO2 NPs exposure for 24 hr did not affect nematode survival rates, but did affect, to varying degrees, the reproduction, development, and movement of nematodes, with nematode fecundity being the most sensitive to SiO2 NPs toxicity. The NPs exposed group showed enhanced germ cell apoptosis and increased oxidative stress as seen through an increase in ROS and malondialdehyde (MDA), and decrease in reduced glutathione (GSH). N-acetyl-L-cysteine (NAC), an antioxidant, negated SiO2 NPs effect on germ cells and restored nematodes reproductive ability. We also found that SiO2 NPs could affect the expression of genes related to metal detoxification, oxidative stress, and apoptosis. The expression of metallothionein coding genes mtl-1 and mtl-2 changed most significantly among the tested genes. We demonstrated that SiO2 NPs could enhance germ cell apoptosis by inducing oxidative stress, providing a new area for studies of the mechanism of SiO2 NP toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Células Germinativas/patologia , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/toxicidade , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Malondialdeído/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Estresse Oxidativo/efeitos dos fármacos
19.
Environ Mol Mutagen ; 61(6): 611-621, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285465

RESUMO

The rodent Pig-a gene mutation assay has demonstrated remarkable sensitivity in identifying in vivo mutagens, while much less is known about the value of the human PIG-A assay for risk assessment. To obtain more evidence of its potential as a predictive biomarker for carcinogen exposure, we investigated PIG-A mutant frequencies (MFs), along with performing the Comet assay and micronucleus (MN) test, in 267 workers occupationally exposed to lead. Multivariate Poisson regression showed that total red blood cell PIG-A MFs were significantly higher in lead-exposed workers (10.90 ± 10.7 × 10-6 ) than in a general population that we studied previously (5.25 ± 3.6 × 10-6 ) (p < .0001). In contrast, there was no increase in lymphocyte MN frequency or in DNA damage as measured by percentage comet tail intensity in whole blood cells. Current year worker blood lead levels (BLL), an exposure biomarker, were elevated (232.6 ± 104.6 µg/L, median: 225.4 µg/L); a cumulative blood lead index (CBLI) also was calculated based on a combination of current and historical worker BLL data. Chi-square testing indicated that PIG-A MFs were significantly related to CBLI (p = .0249), but independent of current year BLL (p = .4276). However, % comet tail intensity and MN frequencies were better associated with current year BLL than CBLI. This study indicates that the PIG-A assay could serve as biomarker to detect the genotoxic effects of lead exposure and demonstrates that a battery of genotoxicity biomarkers having mechanistic complementarity may be useful for comprehensively monitoring human carcinogenic risk.


Assuntos
Chumbo/toxicidade , Proteínas de Membrana/genética , Mutagênicos/toxicidade , Exposição Ocupacional/efeitos adversos , Adulto , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Humanos , Masculino , Testes para Micronúcleos/métodos , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos , Taxa de Mutação
20.
Environ Mol Mutagen ; 61(4): 456-464, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31743483

RESUMO

The rodent Pig-a assay has been used extensively as a potential regulatory assay for evaluating the in vivo mutagenicity of test substances. Although the assay can be conducted in different mammalian species, there have been only a few reports describing its use in humans, and rarely in genotoxicant-exposed human populations. In this study, PIG-A mutation frequencies (MFs) were evaluated in 36 azathioprine (AZA; human carcinogen)-treated inflammatory bowel disease (IBD) patients and 36 healthy volunteers. IBD patients exhibited a slight but statistically higher MF (6.10 ± 4.44 × 10-6 ) than healthy volunteers (4.97 ± 2.74 × 10-6 ) (P = 0.0489). The estimated relative risk for the exposed patients was 1.22 which indicated that AZA is a risk factor for inducing PIG-A mutation. However, the PIG-A MF showed no associations with AZA treatment duration or total AZA exposure. In addition, we performed the cytokinesis-block micronucleus test on the same samples. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in IBD patients (MN: 4.70 ± 2.86‰; NBUD: 1.89 ± 0.95‰) were significantly higher than in healthy volunteers (MN: 1.47 ± 0.77‰, P < 0.001; NBUD: 0.90 ± 0.58‰, P = 0.004). MN frequency also had significant correlations with AZA treatment duration (P = 0.011) and total AZA exposure (P = 0.018). Our findings indicate that AZA-treated IBD patients have only a marginally significant increase in PIG-A MF; in contrast, a much stronger AZA-associated increase in genotoxicity was detected with the lymphocyte MN assay. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Antimetabólitos/efeitos adversos , Azatioprina/efeitos adversos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteínas de Membrana/genética , Mutagênicos/efeitos adversos , Adolescente , Adulto , Feminino , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Pessoa de Meia-Idade , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Taxa de Mutação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA