RESUMO
The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,ß-unsaturated ketones, ß-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.
RESUMO
No matter through asymmetric reduction of ketones or kinetic resolution of secondary alcohols, enantioselective synthesis of the corresponding secondary alcohols is challenging when the two groups attached to the prochiral or chiral centers are spatially or electronically similar. For examples, dialkyl (sp3 vs. sp3), diaryl (sp2 vs. sp2), and aryl-alkenyl (sp2 vs. sp2) alcohols are difficult to produce with high enantioselectivities. By exploiting our recently developed Ru-catalysts of minimal stereogenicity, we reported herein a highly efficient kinetic resolution of aryl-alkenyl alcohols through hydrogen transfer. This method enabled such versatile chiral building blocks for organic synthesis as allylic alcohols, to be readily accessed with excellent enantiomeric excesses at practically useful conversions.
RESUMO
The borrowing-hydrogen (or hydrogen autotransfer) process, where the catalyst dehydrogenates a substrate and formally transfers the H atom to an unsaturated intermediate, is an atom-efficient and environmentally benign transformation. Described here is an example of an asymmetric borrowing-hydrogen cascade for the formal anti-Markovnikov hydroamination of allyl alcohols to synthesize optically enriched γ-secondary amino alcohols. By exploiting the Ru-(S)-iPrPyme catalyst with minimal stereogenicity, a cascade process including dehydrogenation, conjugate addition, and asymmetric reduction was developed. The mild conditions, functional group tolerance, and broad substrate scope (54 examples) demonstrate the synthetic practicality of the catalytic system.