Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(31)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657640

RESUMO

Impurity doping is a necessary technology for the application of semiconductor materials in microelectronic devices. The quantification of doping effects is crucial for controlling the transport properties of semiconductors. Here, taking two-dimensional (2D) hexagonal boron phosphide semiconductor as an example, we employ coherent potential approximation method to investigate the electronic properties of 2D semiconductor materials at low doping concentrations, which cannot be exploited with conventional density function theory. The results demonstrate that the positive or negative impurity potential in 2D semiconductors determines whether it is p-type or n-type doping, while the impurity potential strength decides whether it is shallow-level or deep-level doping. Impurity concentration has important impacts on not only the intensity but also the broadening of impurity peak in band gap. Importantly, we provide the operating temperature range of hexagonal boron phosphide as a semiconductor device under different impurity concentrations and impurity potentials. The methodology of this study can be applied to other 2D semiconductors, which is of great significance for quantitative research on the application of 2D semiconductors for electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA