Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 593(18): 4259-73, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173027

RESUMO

Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults.


Assuntos
Envelhecimento/patologia , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Biossíntese de Proteínas/fisiologia , Magreza/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Envelhecimento/metabolismo , Aminoácidos Essenciais/metabolismo , Repouso em Cama/métodos , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Proteólise , RNA Mensageiro/metabolismo , Magreza/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
2.
Sci Rep ; 9(1): 2540, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796259

RESUMO

Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately. To determine whether these communities respond similarly to environmental changes, we measured taxonomic and trait-based responses of plant and soil microbial communities to four years of experimental warming and nitrogen deposition in a temperate grassland. Plant diversity responded strongly to N addition, whereas soil microbial communities responded primarily to warming, likely via an associated decrease in soil moisture. These above and belowground changes were associated with selection for more resource-conservative plant and microbe growth strategies, which reduced community functional diversity. Functional characteristics of plant and soil microbial communities were weakly correlated (P = 0.07) under control conditions, but not when above or belowground communities were altered by either global change driver. These results highlight the potential for global change drivers operating simultaneously to have asynchronous impacts on above and belowground components of ecosystems. Assessment of a single ecosystem component may therefore greatly underestimate the whole-system impact of global environmental changes.

3.
Infect Genet Evol ; 43: 151-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27211884

RESUMO

In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.


Assuntos
Vírus de DNA/genética , DNA Circular/genética , DNA Viral/genética , Genoma Viral , Metagenômica , Filogenia , Animais , Camelídeos Americanos/virologia , Bovinos , Galinhas/virologia , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA Circular/química , Cervos/virologia , Cães , Patos/virologia , Fezes/virologia , Variação Genética , Lebres/virologia , Cavalos/virologia , Nova Zelândia , Conformação de Ácido Nucleico , Ovinos/virologia , Suínos/virologia , Replicação Viral/fisiologia
4.
Virus Res ; 177(2): 209-16, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23994297

RESUMO

A wide variety of novel single-stranded DNA (ssDNA) viruses have been found in faecal matter of chimpanzees, cows, rodents, bats, badgers, foxes and pigs over the last few years. Using a combination of rolling circle amplification coupled with restriction enzyme digests based approach as well as a next generation sequencing informed approach, we have recovered fourteen full genomes of ssDNA viruses which exhibit genomic features described for members of the recently proposed gemycircularvirus group from a wide variety of mammal and bird faecal samples across New Zealand. The fourteen novel ssDNA viruses (2122-2290nt) encode two major proteins, a replication associated protein (Rep) and a capsid protein (Cp) which are bi-directionally transcribed. Interestingly, the Rep of these novel viruses are similar to gemycircularviruses detected in insects, cassava leaves, and badger faecal matter, the novel viruses share sequence similarities with the mycovirus sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) and Rep-like sequences found in fungal genomes. Pairwise sequence similarities between the 14 novel genomes with other related viral isolates (gemycircularviruses) indicated that they share greater than 55.8% genome-wide identity. Additionally, they share between 55% and 59% pairwise identity with putative novel ssDNA virus genomes recently isolated from sewage baminivirus, niminivirus and nephavirus. Based on the similarities to SsHADV-1 and Rep-like sequences found in fungal genomes, these novel gemycircularviruses may infect fungi.


Assuntos
Aves/virologia , Vírus de DNA/isolamento & purificação , Fezes/virologia , Mamíferos/virologia , Proteínas Virais/genética , Animais , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA