Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Phys ; 46(5): 2310-2322, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30677145

RESUMO

PURPOSE: With recent substantial improvements in modern computing, interest in quantitative imaging with CT has seen a dramatic increase. As a result, the need to both create and analyze large, high-quality datasets of clinical studies has increased as well. At present, no efficient, widely available method exists to accomplish this. The purpose of this technical note is to describe an open-source high-throughput computational pipeline framework for the reconstruction and analysis of diagnostic CT imaging data to conduct large-scale quantitative imaging studies and to accelerate and improve quantitative imaging research. METHODS: The pipeline consists of two, primary "blocks": reconstruction and analysis. Reconstruction is carried out via a graphics processing unit (GPU) queuing framework developed specifically for the pipeline that allows a dataset to be reconstructed using a variety of different parameter configurations such as slice thickness, reconstruction kernel, and simulated acquisition dose. The analysis portion then automatically analyzes the output of the reconstruction using "modules" that can be combined in various ways to conduct different experiments. Acceleration of analysis is achieved using cluster processing. Efficiency and performance of the pipeline are demonstrated using an example 142 subject lung screening cohort reconstructed 36 different ways and analyzed using quantitative emphysema scoring techniques. RESULTS: The pipeline reconstructed and analyzed the 5112 reconstructed datasets in approximately 10 days, a roughly 72× speedup over previous efforts using the scanner for reconstructions. Tightly coupled pipeline quality assurance software ensured proper performance of analysis modules with regard to segmentation and emphysema scoring. CONCLUSIONS: The pipeline greatly reduced the time from experiment conception to quantitative results. The modular design of the pipeline allows the high-throughput framework to be utilized for other future experiments into different quantitative imaging techniques. Future applications of the pipeline being explored are robustness testing of quantitative imaging metrics, data generation for deep learning, and use as a test platform for image-processing techniques to improve clinical quantitative imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Gráficos por Computador , Controle de Qualidade , Doses de Radiação
2.
Med Phys ; 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858509

RESUMO

PURPOSE: To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open-source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. METHODS: Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on trilinear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and released under the open-source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. RESULTS: For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. CONCLUSION: FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open-source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets.

3.
Med Phys ; 44(4): 1337-1346, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28122122

RESUMO

PURPOSE: Lung cancer screening with low-dose CT has recently been approved for reimbursement, heralding the arrival of such screening services worldwide. Computer-aided detection (CAD) tools offer the potential to assist radiologists in detecting nodules in these screening exams. In lung screening, as in all CT exams, there is interest in further reducing radiation dose. However, the effects of continued dose reduction on CAD performance are not fully understood. In this work, we investigated the effect of reducing radiation dose on CAD lung nodule detection performance in a screening population. METHODS: The raw projection data files were collected from 481 patients who underwent low-dose screening CT exams at our institution as part of the National Lung Screening Trial (NLST). All scans were performed on a multidetector scanner (Sensation 64, Siemens Healthcare, Forchheim Germany) according to the NLST protocol, which called for a fixed tube current scan of 25 effective mAs for standard-sized patients and 40 effective mAs for larger patients. The raw projection data were input to a reduced-dose simulation software to create simulated reduced-dose scans corresponding to 50% and 25% of the original protocols. All raw data files were reconstructed at the scanner with 1 mm slice thickness and B50 kernel. The lungs were segmented semi-automatically, and all images and segmentations were input to an in-house CAD algorithm trained on higher dose scans (75-300 mAs). CAD findings were compared to a reference standard generated by an experienced reader. Nodule- and patient-level sensitivities were calculated along with false positives per scan, all of which were evaluated in terms of the relative change with respect to dose. Nodules were subdivided based on size and solidity into categories analogous to the LungRADS assessment categories, and sub-analyses were performed. RESULTS: From the 481 patients in this study, 82 had at least one nodule (prevalence of 17%) and 399 did not (83%). A total of 118 nodules were identified. Twenty-seven nodules (23%) corresponded to LungRADS category 4 based on size and composition, while 18 (15%) corresponded to LungRADS category 3 and 73 (61%) corresponded to LungRADS category 2. For solid nodules ≥8 mm, patient-level median sensitivities were 100% at all three dose levels, and mean sensitivities were 72%, 63%, and 63% at original, 50%, and 25% dose, respectively. Overall mean patient-level sensitivities for nodules ranging from 3 to 45 mm were 38%, 37%, and 38% at original, 50%, and 25% dose due to the prevalence of smaller nodules and nonsolid nodules in our reference standard. The mean false-positive rates were 3, 5, and 13 per case. CONCLUSIONS: CAD sensitivity decreased very slightly for larger nodules as dose was reduced, indicating that reducing the dose to 50% of original levels may be investigated further for use in CT screening. However, the effect of dose was small relative to the effect of the nodule size and solidity characteristics. The number of false positives per scan increased substantially at 25% dose, illustrating the importance of tuning CAD algorithms to very challenging, high-noise screening exams.


Assuntos
Diagnóstico por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Programas de Rastreamento/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos
4.
Med Phys ; 43(3): 1411-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936725

RESUMO

PURPOSE: With growing interest in quantitative imaging, radiomics, and CAD using CT imaging, the need to explore the impacts of acquisition and reconstruction parameters has grown. This usually requires extensive access to the scanner on which the data were acquired and its workflow is not designed for large-scale reconstruction projects. Therefore, the authors have developed a freely available, open-source software package implementing a common reconstruction method, weighted filtered backprojection (wFBP), for helical fan-beam CT applications. METHODS: FreeCT_wFBP is a low-dependency, GPU-based reconstruction program utilizing c for the host code and Nvidia CUDA C for GPU code. The software is capable of reconstructing helical scans acquired with arbitrary pitch-values, and sampling techniques such as flying focal spots and a quarter-detector offset. In this work, the software has been described and evaluated for reconstruction speed, image quality, and accuracy. Speed was evaluated based on acquisitions of the ACR CT accreditation phantom under four different flying focal spot configurations. Image quality was assessed using the same phantom by evaluating CT number accuracy, uniformity, and contrast to noise ratio (CNR). Finally, reconstructed mass-attenuation coefficient accuracy was evaluated using a simulated scan of a FORBILD thorax phantom and comparing reconstructed values to the known phantom values. RESULTS: The average reconstruction time evaluated under all flying focal spot configurations was found to be 17.4 ± 1.0 s for a 512 row × 512 column × 32 slice volume. Reconstructions of the ACR phantom were found to meet all CT Accreditation Program criteria including CT number, CNR, and uniformity tests. Finally, reconstructed mass-attenuation coefficient values of water within the FORBILD thorax phantom agreed with original phantom values to within 0.0001 mm(2)/g (0.01%). CONCLUSIONS: FreeCT_wFBP is a fast, highly configurable reconstruction package for third-generation CT available under the GNU GPL. It shows good performance with both clinical and simulated data.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Tomografia Computadorizada Espiral , Algoritmos
5.
IEEE Trans Med Imaging ; 35(1): 144-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26208309

RESUMO

Lack of classifier robustness is a barrier to widespread adoption of computer-aided diagnosis systems for computed tomography (CT). We propose a novel Robustness-Driven Feature Selection (RDFS) algorithm that preferentially selects features robust to variations in CT technical factors. We evaluated RDFS in CT classification of fibrotic interstitial lung disease using 3D texture features. CTs were collected for 99 adult subjects separated into three datasets: training, multi-reconstruction, testing. Two thoracic radiologists provided cubic volumes of interest corresponding to six classes: pulmonary fibrosis, ground-glass opacity, honeycombing, normal lung parenchyma, airway, vessel. The multi-reconstruction dataset consisted of CT raw sinogram data reconstructed by systematically varying slice thickness, reconstruction kernel, and tube current (using a synthetic reduced-tube-current algorithm). Two support vector machine classifiers were created, one using RDFS ("with-RDFS") and one not ("without-RDFS"). Classifier robustness was compared on the multi-reconstruction dataset, using Cohen's kappa to assess classification agreement against a reference reconstruction. Classifier performance was compared on the testing dataset using the extended g-mean (EGM) measure. With-RDFS exhibited superior robustness (kappa 0.899-0.989) compared to without-RDFS (kappa 0.827-0.968). Both classifiers demonstrated similar performance on the testing dataset (EGM 0.778 for with-RDFS; 0.785 for without-RDFS), indicating that RDFS does not compromise classifier performance when discarding nonrobust features. RDFS is highly effective at improving classifier robustness against slice thickness, reconstruction kernel, and tube current without sacrificing performance, a result that has implications for multicenter clinical trials that rely on accurate and reproducible quantitative analysis of CT images collected under varied conditions across multiple sites, scanners, and timepoints.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Fibrose Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão
6.
Med Phys ; 42(5): 2679-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979066

RESUMO

PURPOSE: Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. METHODS: Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. RESULTS: The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-reconstruction-method mean/SD pairs were (1.4%, 6.3%) and (-0.7%, 7.2%) for I44 strength 3 and I50 strength 3, respectively. Analysis of representative nodules confirmed that reader variability appeared unaffected by dose or reconstruction method. CONCLUSIONS: Lung-nodule volumetry was extremely robust to the radiation-dose level, down to the minimum scanner-supported dose settings. In addition, volumetry was robust to the reconstruction methods used in this study, which included both conventional filtered backprojection and iterative methods.


Assuntos
Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Humanos , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/instrumentação
7.
Med Phys ; 40(5): 051914, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635284

RESUMO

PURPOSE: Digital breast tomosynthesis (DBT) is a promising breast cancer screening tool that has already begun making inroads into clinical practice. However, there is ongoing debate over how to quantitatively evaluate and optimize these systems, because different definitions of image quality can lead to different optimal design strategies. Powerful and accurate tools are desired to extend our understanding of DBT system optimization and validate published design principles. METHODS: The authors developed a virtual trial framework for task-specific DBT assessment that uses digital phantoms, open-source x-ray transport codes, and a projection-space, spatial-domain observer model for quantitative system evaluation. The authors considered evaluation of reconstruction algorithms as a separate problem and focused on the information content in the raw, unfiltered projection images. Specifically, the authors investigated the effects of scan angle and number of angular projections on detectability of a small (3 mm diameter) signal embedded in randomly-varying anatomical backgrounds. Detectability was measured by the area under the receiver-operating characteristic curve (AUC). Experiments were repeated for three test cases where the detectability-limiting factor was anatomical variability, quantum noise, or electronic noise. The authors also juxtaposed the virtual trial framework with other published studies to illustrate its advantages and disadvantages. RESULTS: The large number of variables in a virtual DBT study make it difficult to directly compare different authors' results, so each result must be interpreted within the context of the specific virtual trial framework. The following results apply to 25% density phantoms with 5.15 cm compressed thickness and 500 µm(3) voxels (larger 500 µm(2) detector pixels were used to avoid voxel-edge artifacts): 1. For raw, unfiltered projection images in the anatomical-variability-limited regime, AUC appeared to remain constant or increase slightly with scan angle. 2. In the same regime, when the authors fixed the scan angle, AUC increased asymptotically with the number of projections. The threshold number of projections for asymptotic AUC performance depended on the scan angle. In the quantum- and electronic-noise dominant regimes, AUC behaviors as a function of scan angle and number of projections sometimes differed from the anatomy-limited regime. For example, with a fixed scan angle, AUC generally decreased with the number of projections in the electronic-noise dominant regime. These results are intended to demonstrate the capabilities of the virtual trial framework, not to be used as optimization rules for DBT. CONCLUSIONS: The authors have demonstrated a novel simulation framework and tools for evaluating DBT systems in an objective, task-specific manner. This framework facilitates further investigation of image quality tradeoffs in DBT.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Humanos , Imagens de Fantasmas , Controle de Qualidade , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA