Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.682
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474653

RESUMO

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-Positivos
2.
Mol Cell ; 78(6): 1114-1132.e10, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446320

RESUMO

Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética
3.
Nature ; 593(7857): 61-66, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953410

RESUMO

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Peptídeos/química , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Óxidos N-Cíclicos/química , Camundongos , Osteoblastos/citologia , Oxirredução , Peptídeos/síntese química , Desenvolvimento Sustentável , Viologênios/química
4.
Nucleic Acids Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966995

RESUMO

Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.

5.
Nucleic Acids Res ; 52(D1): D483-D493, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941148

RESUMO

MESPEUS is a freely accessible database which uses carefully selected metal coordination groups found in metalloprotein structures taken from the Protein Data Bank. The database contains geometrical information of metal sites within proteins, including 40 metal types. In order to completely determine the metal coordination, the symmetry-related units of a given protein structure are taken into account and are generated using the appropriate space group symmetry operations. This permits a more complete description of the metal coordination geometry by including all coordinating atoms. The user-friendly web interface allows users to directly search for a metal site of interest using several useful options, including searching for metal elements, metal-donor distances, coordination number, donor residue group, and structural resolution. These searches can be carried out singly or in combination. The details of a metal site and the metal site(s) in the whole structure can be graphically displayed using the interactive web interface. MESPEUS is automatically updated monthly by synchronizing with the PDB database. An investigation for the Mg-ATP interaction is given to demonstrate how MESPEUS can be used to extract information about metal sites by selecting structure and coordination features. MESPEUS is available at http://mespeus.nchu.edu.tw/.


Assuntos
Metaloproteínas , Metaloproteínas/química , Metais/química , Bases de Dados de Proteínas , Interface Usuário-Computador , Internet
6.
PLoS Pathog ; 19(7): e1011556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498977

RESUMO

Although alveolar macrophages (AMs) play important roles in preventing and eliminating pulmonary infections, little is known about their regulation in healthy animals. Since exposure to LPS often renders cells hyporesponsive to subsequent LPS exposures ("tolerant"), we tested the hypothesis that LPS produced in the intestine reaches the lungs and stimulates AMs, rendering them tolerant. We found that resting AMs were more likely to be tolerant in mice lacking acyloxyacyl hydrolase (AOAH), the host lipase that degrades and inactivates LPS; isolated Aoah-/- AMs were less responsive to LPS stimulation and less phagocytic than were Aoah+/+ AMs. Upon innate stimulation in the airways, Aoah-/- mice had reduced epithelium- and macrophage-derived chemokine/cytokine production. Aoah-/- mice also developed greater and more prolonged loss of body weight and higher bacterial burdens after pulmonary challenge with Pseudomonas aeruginosa than did wildtype mice. We also found that bloodborne or intrarectally-administered LPS desensitized ("tolerized") AMs while antimicrobial drug treatment that reduced intestinal commensal Gram-negative bacterial abundance largely restored the innate responsiveness of Aoah-/- AMs. Confirming the role of LPS stimulation, the absence of TLR4 prevented Aoah-/- AM tolerance. We conclude that commensal LPSs may stimulate and desensitize (tolerize) alveolar macrophages in a TLR4-dependent manner and compromise pulmonary immunity. By inactivating LPS in the intestine, AOAH promotes antibacterial host defenses in the lung.


Assuntos
Hidrolases de Éster Carboxílico , Macrófagos Alveolares , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Pulmão , Macrófagos Alveolares/imunologia , Receptor 4 Toll-Like , Hidrolases de Éster Carboxílico/metabolismo
7.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551071

RESUMO

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Cistite Intersticial , Receptor 3 Toll-Like , Urotélio , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células , Cistite Intersticial/patologia , Cistite Intersticial/metabolismo , Cistite Intersticial/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Urotélio/patologia , Urotélio/metabolismo
8.
Nucleic Acids Res ; 51(17): 8934-8956, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607832

RESUMO

An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , DNA/metabolismo , Mutação Puntual , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(32): e2204779119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914128

RESUMO

Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.


Assuntos
Azauridina , Proteína Huntingtina , Doença de Huntington , Proteínas Mutantes , Mutação , Proteínas Nucleares , Fenótipo , Proteínas Repressoras , Fatores de Elongação da Transcrição , Alelos , Animais , Azauridina/farmacologia , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Medições Luminescentes , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismo
10.
J Am Soc Nephrol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857203

RESUMO

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

11.
J Biol Chem ; 299(1): 102728, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410433

RESUMO

Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.


Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiência , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Obesidade/genética
12.
J Cell Physiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940190

RESUMO

Chondrosarcoma is a malignant bone tumor that emerges from abnormalities in cartilaginous tissue and is related with lung metastases. Nicotinamide phosphoribosyltransferase (NAMPT) is an adipocytokine reported to enhance tumor metastasis. Our results from clinical samples and the Gene Expression Omnibus data set reveal that NAMPT levels are markedly higher in chondrosarcoma patients than in normal individuals. NAMPT stimulation significantly increased lysyl oxidase (LOX) production in chondrosarcoma cells. Additionally, NAMPT increased LOX-dependent cell migration and invasion in chondrosarcoma by suppressing miR-26b-5p generation through the c-Src and Akt signaling pathways. Overexpression of NAMPT promoted chondrosarcoma metastasis to the lung in vivo. Furthermore, knockdown of LOX counteracted NAMPT-facilitated metastasis. Thus, the NAMPT/LOX axis presents a novel target for treating the metastasis of chondrosarcoma.

13.
J Am Chem Soc ; 146(14): 10103-10114, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546392

RESUMO

Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-ß-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4″ position without requiring prior 6″-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-ß-d-glucose or NDP-4"-amino-4"-deoxy-ß-d-glucose to form the 8',1″-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-ß-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-ß-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.


Assuntos
Antibacterianos , Vias Biossintéticas , Glucose , Nebramicina/análogos & derivados , Glicosilação , Aminoglicosídeos , Nucleotídeos , Hexoses , Açúcares
14.
Curr Issues Mol Biol ; 46(6): 6267-6283, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921045

RESUMO

Autoantibodies against apolipoprotein A-I (ApoA-I) are associated with cardiovascular disease risks. We aimed to examine the 4-hydroxy-2-nonenal (HNE) modification of ApoA-I in coronary artery disease (CAD) and evaluate the potential risk of autoantibodies against their unmodified and HNE-modified peptides. We assessed plasma levels of ApoA-I, HNE-protein adducts, and autoantibodies against unmodified and HNE-peptide adducts, and significant correlations and odds ratios (ORs) were examined. Two novel CAD-specific HNE-peptide adducts, ApoA-I251-262 and ApoA-I70-83, were identified. Notably, immunoglobulin G (IgG) anti-ApoA-I251-262 HNE, IgM anti-ApoA-I70-83 HNE, IgG anti-ApoA-I251-262, IgG anti-ApoA-I70-83, and HNE-protein adducts were significantly correlated with triglycerides, creatinine, or high-density lipoprotein in CAD with various degrees of stenosis (<30% or >70%). The HNE-protein adduct (OR = 2.208-fold, p = 0.020) and IgM anti-ApoA-I251-262 HNE (2.046-fold, p = 0.035) showed an increased risk of progression from >30% stenosis in CAD. HNE-protein adducts and IgM anti-ApoA-I251-262 HNE may increase the severity of CAD at high and low levels, respectively.

15.
Mol Med ; 30(1): 86, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877399

RESUMO

BACKGROUND: Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM. METHODS: We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells. RESULTS: We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN. CONCLUSION: These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.


Assuntos
Antígenos HLA-G , Interleucina-6 , Mieloma Múltiplo , Neovascularização Patológica , Mieloma Múltiplo/sangue , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Humanos , Animais , Neovascularização Patológica/metabolismo , Antígenos HLA-G/sangue , Antígenos HLA-G/metabolismo , Camundongos , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Idoso , Modelos Animais de Doenças , Angiogênese
16.
Br J Haematol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38981737

RESUMO

There are limited data on the optimal choice of anticoagulation in multiple myeloma (MM) patients receiving immunomodulatory drugs (IMiDs). We conducted a propensity score-matched cohort study using the TriNetX database to compare the efficacy and safety of factor Xa inhibitors and warfarin in this patient population. Compared to warfarin, factor Xa inhibitors had a similar risk of deep vein thrombosis (hazard ratio [HR]: 1.11 [95% CI: 0.50-2.46]) or pulmonary embolism (HR: 1.08 [95% CI: 0.59-2.00]). There were no differences in the risk of gastrointestinal or intracranial bleeding. Factor Xa inhibitor-treated patients had lower all-cause mortality (HR: 0.56 [95% CI: 0.36-0.86]) compared with warfarin. These data suggest that factor Xa inhibitors had similar safety and efficacy compared with warfarin for MM patients on IMiDs.

17.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35615984

RESUMO

eIF4G is an important eukaryotic translation initiation factor. In this study, eIF4G1, one of the eIF4G isoforms, was shown to directly participate in biogenesis of the large (60S) ribosomal subunit in Saccharomyces cerevisiae cells. Mutation of eIF4G1 decreased the amount 60S ribosomal subunits significantly. The C-terminal fragment of eIF4G1 could complement the function in 60S biogenesis. Analyses of its purified complex with mass spectrometry indicated that eIF4G1 associated with the pre-60S form directly. Strong genetic and direct protein-protein interactions were observed between eIF4G1 and Ssf1 protein. Upon deletion of eIF4G1, Ssf1, Rrp15, Rrp14 and Mak16 were abnormally retained on the pre-60S complex. This purturbed the loading of Arx1 and eL31 at the polypeptide exit tunnel (PET) site and the transition to a Nog2 complex. Our data indicate that eIF4G1 is important in facilitating PET maturation and 27S processing correctly. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fator de Iniciação Eucariótico 4G/análise , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Peptídeos/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Anal Chem ; 96(11): 4463-4468, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38462969

RESUMO

The surge in applications of nitrile compounds across diverse fields, such as pharmaceuticals, agrochemicals, dyes, and functional materials, necessitates the development of rapid and efficient detection and identification methods. In this study, we introduce a chemosensing strategy employing a novel 19F-labeled probe, facilitating swift and accurate analysis of a broad spectrum of nitrile-containing analytes. This approach leverages the reversible interaction between the 19F-labeled probe and the analytes to produce chromatogram-like outputs, ensuring the precise identification of various pharmaceuticals and pesticides within complex matrices. Additionally, this dynamic system offers a versatile platform to investigate through-space 19F-19F interactions, showcasing its potential for future applications in mechanistic studies.

19.
Anal Chem ; 96(28): 11448-11454, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38960938

RESUMO

Within pharmaceutical research, ensuring the enantiomeric purity of chiral compounds is critical. Specifically, chiral amines are a crucial category of compounds, due to their extensive therapeutic uses. However, the enantiomeric analysis of these compounds, particularly those with significant steric hindrance, remains a challenge. To address this issue, our research introduces a novel chiral 19F-tagged NNO palladium pincer probe, strategically engineered with an open binding site to accommodate bulky amines. This probe facilitates the enantiodifferentiation of such amines, as evidenced by the distinct 19F NMR signals generated by the enantiomers. Moreover, our findings highlight the probe's applicability in the chiral discrimination of various psychoactive substances, underscoring its potential for the identification of illegal stimulant use and contributing to forensic investigations.

20.
Anal Chem ; 96(22): 9159-9166, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38726669

RESUMO

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Assuntos
Hidrogéis , Lasers , Pele , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Pele/química , Pele/metabolismo , Hidrogéis/química , Suor/química , Suor/metabolismo , Glucose/análise , Glucose/metabolismo , Ureia/química , Ureia/análise , Ácido Láctico/análise , Ácido Láctico/química , Cristais Líquidos/química , Metilgalactosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA